\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{projective space} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{geometry}{}\paragraph*{{Geometry}}\label{geometry} [[!include higher geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{for_commutative_rings_and_algebras}{For commutative rings and algebras}\dotfill \pageref*{for_commutative_rings_and_algebras} \linebreak \noindent\hyperlink{RealAndComplexProjectiveSpace}{Real and complex projective space}\dotfill \pageref*{RealAndComplexProjectiveSpace} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $T$ be an abelian [[Lawvere theory]] (one containing the theory of [[abelian group]]s). Write $\mathbb{A}^1$ for its canonical [[line object]] and $\mathbb{G}_m$ for the corresponding multiplicative group object. The \textbf{projective space} $\mathbb{P}_n$ of $T$ is the [[quotient]] \begin{displaymath} \mathbb{P}_n := (\mathbb{A}^{n+1} - \{0\})/\mathbb{G}_m \end{displaymath} of the $(n+1)$-fold [[product]] of the line with itself by the canonical [[action]] of $\mathbb{G}_m$. Any point $(x_0,x_1,\ldots,x_n)\in \mathbb{A}^{n+1} - \{0\}$ gives \emph{homogeneous coordinates} for its image under the quotient map. When considered in this fashion, one often writes $[x_0:x_1:\ldots:x_n]$. Homogeneous coordinates were introduced in \hyperlink{Mobius27}{M\"o{}bius 27} More generally, for $(X,0)$ a pointed space with (pointed) $\mathbb{G}_m$-[[action]], the quotient \begin{displaymath} \mathbb{P}(X) := (X-\{0\})/\mathbb{G}_m \end{displaymath} is the corresponding projective space. If instead of forming the [[quotient]] one forms the weak quotient/[[action groupoid]], one speaks of the [[projective stack]] \begin{displaymath} \hat \mathbb{P}(X) \coloneqq (X-\{0\})//\mathbb{G}_m \,. \end{displaymath} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{for_commutative_rings_and_algebras}{}\subsubsection*{{For commutative rings and algebras}}\label{for_commutative_rings_and_algebras} For $T$ the theory of commutative [[ring]]s or more generally commutative [[associative algebra]]s over a ring $k$, $\mathbb{A}_k^1$ is the standard [[affine line]] over $k$. In this case $\mathbb{P}^n_k$ is (\ldots{}) A closed sub[[scheme]] of $\mathbb{P}^n_k$ is a [[projective scheme]]. \begin{uprop} For $R$ a commutative $k$-algebra, there is a [[natural isomorphism]] between \begin{itemize}% \item $\mathbb{Z}$-[[graded algebra|gradings]] on $R$; \item $\mathbb{G}_m$-[[action]]s on $Spec R$. \end{itemize} \end{uprop} The proof is spelled out at \emph{[[affine line]]}. \hypertarget{RealAndComplexProjectiveSpace}{}\subsubsection*{{Real and complex projective space}}\label{RealAndComplexProjectiveSpace} We discuss how complex projective space for $k$ the [[real numbers]] or the [[complex numbers]] equipped with their [[Euclidean space|Euclidean]] [[metric topology]] is a [[topological manifold]] and naturally carries the structure of a [[smooth manifold]] (prop. \ref{SmoothManifoldRealComplexProjectiveSpace} below). \begin{itemize}% \item For $\mathbb{R}P^n$ is called \emph{[[real projective space]]}, \item $\mathbb{C}P^n$ is called \emph{[[complex projective space]]}, \begin{itemize}% \item $\mathbb{C}P^1$ is called the [[Riemann sphere]]. \end{itemize} \end{itemize} similarly \begin{itemize}% \item $\mathbb{H}P^n$ is called \emph{[[quaternionic projective space]]}. \end{itemize} For more see at these entries. $\backslash$linebreak \begin{defn} \label{TopologicalProjectiveSpace}\hypertarget{TopologicalProjectiveSpace}{} \textbf{(topological projective space)} Let $n \in \mathbb{N}$. Consider the [[Euclidean space]] $k^{n+1}$ equipped with its [[metric topology]], let $k^{n+1} \setminus \{0\} \subset k^{n+1}$ be the [[topological subspace]] which is the [[complement]] of the origin, and consider on its underlying set the [[equivalence relation]] which identifies two points if they differ by [[multiplication]] with some $c \in k$ (necessarily non-zero): \begin{displaymath} (\vec x_1 \sim \vec x_2) \;\Leftrightarrow\; \left( \underset{c \in k}{\exists} ( \vec x_2 = c \vec x_1 ) \right) \,. \end{displaymath} The [[equivalence class]] $[\vec x]$ is traditionally denoted \begin{displaymath} [x_1 : x_2 : \cdots : x_{n+1}] \,. \end{displaymath} Then the \emph{[[projective space]]} $k P^n$ is the corresponding [[quotient topological space]] \begin{displaymath} k P^n \;\coloneqq\; \left(k^{n+1} \setminus \{0\}\right) / \sim \,. \end{displaymath} \end{defn} \begin{lemma} \label{CanonicalInclusionOfProjectiveSpaces}\hypertarget{CanonicalInclusionOfProjectiveSpaces}{} \textbf{(canonical inclusion of projective spaces)} For $n \in \mathbb{N}$ the function between topological projective spaces from def. \ref{TopologicalProjectiveSpace} given by \begin{displaymath} \itexarray{ k P^n &\overset{}{\longrightarrow}& k P^{n+1} \\ [x_1 : \cdots : x_{n+1}] &\mapsto& [ x_1 : \cdots : x_{n+1} : 0] } \end{displaymath} is a [[continuous function]]. \end{lemma} \begin{proof} There is a [[commuting square]] of functions of underlying sets of the form \begin{displaymath} \itexarray{ (x_1, \cdots, x_{n+1}) &\mapsto& (x_1, \cdots, x_{n+1}, 0) \\ k^{n+1} & \overset{}{\longrightarrow} & k^{n+2} \\ \downarrow &\searrow& \downarrow \\ k P^n &\longrightarrow& k P^{n+1} \\ [x_1 : \cdots : x_{n+1}] &\mapsto& [ x_1 : \cdots : x_{n+1} : 0] } \,, \end{displaymath} where the two vertical functions are the defining quotient co-projections, which are continuous functions by nature of [[quotient spaces]]. The top function is clearly continuous ([[polynomials are continuous]]) and hence so is its composite with the right co-projection, inducated by the diagonal arrow in the above diagram. This implies that the bottom function is continuous by the nature (the [[universal property]]) of the quotient space topology. \end{proof} \begin{prop} \label{QuotientOfnSphereTopologicalProjectiveSpace}\hypertarget{QuotientOfnSphereTopologicalProjectiveSpace}{} \textbf{(projective space as quotient space of an $n$-sphere)} For $n \in \mathbb{C}$ there are [[homeomorphisms]] \begin{enumerate}% \item $S^{n}/(\mathbb{Z}/2) \simeq \mathbb{R}P^n$ between \begin{enumerate}% \item the [[quotient space]] of the [[Euclidean space|Euclidean]] [[n-sphere]] canonically regarded as a [[subspace]] of the [[Euclidean space]] $\mathbb{R}^{n+1}$ by the [[equivalence relation]] which identifies two points $\vec p \in \mathbb{R}^{n+1}$ if they differ by multiplication by $-1$ \item [[real projective space]] (def. \ref{TopologicalProjectiveSpace}) \end{enumerate} \item $S^{2n+1}/S^1 \simeq \mathbb{C}P^{n}$ between \begin{enumerate}% \item the [[quotient space]] of the [[Euclidean space|Euclidean]] [[n-sphere|(2n+2)-sphere]], canonically regarded as a [[subspace]] of the [[Euclidean space]] $\mathbb{R}^{2n+2} \simeq \mathbb{C}^{n+1}$ by the [[equivalence relation]] which identifies two points $\vec p \in \mathbb{C}^{n+1}$ if they differ by multiplication by an complex number of unit norm \item [[complex projective space]] (def. \ref{TopologicalProjectiveSpace}). \end{enumerate} \end{enumerate} \end{prop} \begin{proof} It is clear that there is a [[bijection]] of underlying sets as claimed: Under the equivalence relation defining projective space, every element $\vec x = (x_1, \cdots, x_{n+1}) \in k^{n+1}$ is equivalent to one of unit norm, namely $\frac{1}{\vert \vec x\vert} \vec x$, hence lying on the unit sphere. Representatives of this form are unique up to further multiplication by elements in $k \setminus \{0\}$ of unit norm. It remains to see that this bijection is a [[homeomorphism]]. For definiteness of notation, we discuss this for the case $k = \mathbb{C}$, the case $k = \mathbb{R}$ works verbatim the same, with the evident substitutions. So we have a [[commuting diagram]] of functions of underlying sets \begin{displaymath} \itexarray{ S^{2n+1} &\hookrightarrow& \mathbb{C}^{n+1} \setminus \{0\} \\ {}^{\mathllap{q_{S^{2n+1}}}}\downarrow &\searrow^{\mathrlap{f}}& \downarrow^{\mathrlap{q_{\mathbb{C}^{n+1}}}} \\ S^{2n+1}/S^1 &\longrightarrow& \mathbb{C}P^n } \end{displaymath} where the top horizontal and the two vertical functions are continuous, and where the bottom function is is a bijection. Since the diagonal composite is also continuous, the nature of the [[quotient space topology]] implies that the bottom function is also continuous. To see that it is a [[homeomorphism]] it hence remains to see that it is an [[open map]] (by \href{homeomorphism#HomeoContinuousOpenBijection}{this prop.}). So let $U \subset S^{2n+1}/S^1$ be an open set, which means that $q_{S^{2n+1}}^{-1}(U) \subset S^{2n+1}$ is an open set. We need to see that $f(q_{S^{2n+1}}^{-1}(U)) \subset \mathbb{C}P^{n}$ is open, hence that $q_{\mathbb{C}^{n+1}}^{-1}(f(q_{S^{2n+1}}^{-1}(U))) \subset \mathbb{C}^{n+1}$ is open. Now by the nature of the [[Euclidean space|Euclidean]] [[metric topology]], the open subset $q_{S^{2n+1}}^{-1}(U)$ is a union of open balls $B^\circ_x(\epsilon)$ in $\mathbb{C}^{n+1}$ intersected with $S^{2n+1}$. But then $q_{\mathbb{C}^{n+1}}^{-1}(f(B^\circ_x(\epsilon)\vert_{S^{2n+1}}))$ is their [[orbit]] under the multiplicative action by $\mathbb{C} \setminus \{0\}$, hence is a [[cylinder]] $B^\circ_x(\epsilon)\vert_{S^{2n+1}} \times (\mathbb{C} \setminus \{0\})$. This is clearly open. \end{proof} \begin{prop} \label{CellComplexStructureOnTopologicalProjectiveSpace}\hypertarget{CellComplexStructureOnTopologicalProjectiveSpace}{} There is a [[CW-complex]] structure on [[real projective space]] $\mathbb{R}P^n$ (def. \ref{TopologicalProjectiveSpace}) for $n \in \mathbb{N}$, given by [[induction]], where $\mathbb{R}P^{n+1}$ arises from $\mathbb{R}P^n$ by attaching a single cell of dimension $n+1$ with attaching map the [[projection]] $S^{n} \longrightarrow \mathbb{C}P^n$ from prop. \ref{QuotientOfnSphereTopologicalProjectiveSpace}: \begin{displaymath} \itexarray{ S^{n} &\longrightarrow& S^{n}/(\mathbb{Z}/2) \simeq \mathbb{R}P^n \\ {}^{\mathllap{\iota_{n+1}}}\downarrow &(po)& \downarrow \\ D^{n+1} &\underset{q}{\longrightarrow}& \mathbb{R}P^{n+1} } \,. \end{displaymath} Similarly, there is a [[CW-complex]] structure on [[complex projective space]] $\mathbb{C}P^n$ (def. \ref{TopologicalProjectiveSpace}) for $n \in \mathbb{N}$, given by [[induction]], where $\mathbb{C}P^{n+1}$ arises from $\mathbb{C}P^n$ by attaching a single cell of dimension $2(n+1)$ with attaching map the [[projection]] $S^{2n+1} \longrightarrow \mathbb{C}P^n$ from prop. \ref{QuotientOfnSphereTopologicalProjectiveSpace}: \begin{displaymath} \itexarray{ S^{2n+1} &\longrightarrow& S^{2n+1}/S^1 \simeq \mathbb{C}P^n \\ {}^{\mathllap{\iota_{2n+2}}}\downarrow &(po)& \downarrow \\ D^{2n+2} &\underset{q}{\longrightarrow}& \mathbb{C}P^{n+1} } \,. \end{displaymath} \end{prop} \begin{proof} we discuss the case $k = \mathbb{C}$. The case $k= \mathbb{R}$ works verbatim the same, with the evident substitutions. Given [[homogeneous coordinates]] $(z_0 , z_1 , \cdots , z_n , z_{n+1} , z_{n+2}) \in \mathbb{C}^{n+2}$ for $\mathbb{C}P^{n+1}$, let \begin{displaymath} \phi \coloneqq -arg(z_{n+2}) \end{displaymath} be the [[phase]] of $z_{n+2}$. Then under the equivalence relation defining $\mathbb{C}P^{n+1}$ these coordinates represent the same element as \begin{displaymath} \frac{1}{\vert \vec z\vert}(e^{i \phi} z_0, e^{i \phi}z_1,\cdots, e^{i \phi}z_{n+1}, r) \,, \end{displaymath} where \begin{displaymath} r = {\vert z_{n+2}\vert}\in [0,1) \subset \mathbb{C} \end{displaymath} is the [[absolute value]] of $z_{n+2}$. Representatives $\vec z'$ of this form (${\vert \vec z' \vert = 1}$ and $z'_{n+2} \in [0,1]$) parameterize the [[n-disk|2n+2-disk]] $D^{2n+2}$ with [[boundary]] the $(2n+1)$-sphere at $r = 0$. The resulting function $q \colon D^{2n+2} \to \mathbb{C}P^{n+1}$ is continuous: It may be factored as \begin{displaymath} \itexarray{ q_{D^{2n+2}} \colon & D^{2n+2} &\overset{\phantom{AAA}}{\hookrightarrow}& \mathbb{C}^{n+2} \setminus \{0\} &\overset{q_{\mathbb{C}^{n+2}}}{\longrightarrow}& \mathbb{C}P^{n+1} \\ & (Re(z_1), Im(z_1), \cdots, Re(z_{n+1}), Im(z_{n+1}), r) &\mapsto& (z_1, \cdots, z_{n+1}, r) &\mapsto& [ z_1 : \cdots : z_{n+1} : r ] } \end{displaymath} and here the first map is the [[embedding of topological spaces|embedding]] of the disk $D^{2n+2}$ as a [[hemisphere]] in $\mathbb{R}^{2n+1} \hookrightarrow \mathbb{R}^{2n+2} \simeq \mathbb{C}^{2n+2}$, while the second is the defining quotient space projection. Both of these are continuous, and hence so is their composite. The only remaining part of the action of $\mathbb{C}-\{0\}$ which fixes the conditions ${\vert z'\vert} = 0$ and $z'_{n+2}$ is $S^1 \subset \mathbb{C} \setminus \{0\}$ acting on the elements with $r = \{z'_{n+2}\} = 0$ by phase shifts on the $z_0, \cdots, z_{n+1}$. The quotient of this remaining action on $D^{2(n+1)}$ identifies its boundary $S^{2n+1}$-sphere with $\mathbb{C}P^{n}$, by prop. \ref{QuotientOfnSphereTopologicalProjectiveSpace}. This shows that the above square is a [[pushout]] diagram of underlying sets. By the nature of [[colimits]] in [[Top]] (\href{Top#DescriptionOfLimitsAndColimitsInTop}{this prop.}) it remains to see that the [[topological space|topology]] on $\mathbb{C}P^{n+1}$ is the [[final topology]] induced by the functions $D^{2n+2} \to \mathbb{C}P^{n+1}$ and $\mathbb{C}P^n \to \mathbb{C}P^{n+1}$, hence that a subset of $\mathbb{C}P^{n+1}$ is open precisely if its pre-images under these two functions are open. We saw above that $q_{D^{2n+2}}$ is continuous. Moreover, also the function $i_n \colon \mathbb{C}P^n \to \mathbb{C}P^{n+1}$ is continuous (by \href{projective+space#CanonicalInclusionOfProjectiveSpaces}{this lemma}). This shows that if a subset of $\mathbb{C}P^{n+1}$ is open, then its pre-images under these functions are open. It remains to see that if $S \subset \mathbb{C}P^{n+1}$ is a subset with $q_{S^{2n+2}}^{-1}(S) \subset D^{2n+2}$ open and $i_n^{-1}(S) \subset \mathbb{C}P^n$ open, then $S \subset \mathbb{C}P^{n+1}$ is open. Notice that $q_{\mathbb{C}^{n+2}}^{-1}(S)$ contains with every point also its [[orbit]] under the [[action]] of $\mathbb{C} \setminus \{0\}$, and that every open subset of $D^{2n+2}$ is a unions of open balls. By the above factorization of $q_{D^{2n+2}}$ this means that if $q_{D^{2n+2}}^{-1}(S)$ is open, then $q_{\mathbb{C}^{n+2}}^{-1}(S)$ is a union of open cyclinders, hence is open. By the nature of the [[quotient topology]], this means that $S \subset \mathbb{C}P^n$ is open. \end{proof} \begin{defn} \label{TopologicalProjectiveSpaceStandardOpenCover}\hypertarget{TopologicalProjectiveSpaceStandardOpenCover}{} \textbf{(standard open cover of topological projective space)} For $n \in \mathbb{N}$ the \emph{standard open cover} of the projective space $k P^n$ (def. \ref{TopologicalProjectiveSpace}) is \begin{displaymath} \left\{ U_i \subset k P^n \right\}_{i \in \{1, \cdots, n+1\}} \end{displaymath} with \begin{displaymath} U_i \coloneqq \left\{ [x_1 : \cdots : x_{n+1}] \in k P^n \;\vert\; x_i \neq 0 \right\} \,. \end{displaymath} To see that this is an open cover: \begin{enumerate}% \item This is a cover because with the orgin removed in $k^n \setminus \{0\}$ at every point $[x_1: \cdots : x_{n+1}]$ at least one of the $x_i$ has to be non-vanishing. \item These subsets are open in the [[quotient topology]] $k P^n = (k^n \setminus \{0\})/\sim$, since their [[pre-image]] under the quotient co-projection $k^{n+1} \setminus \{0\} \to k P^n$ coincides with the pre-image $(pr_i\circ\iota)^{-1}( k \setminus \{0\} )$ under the [[projection]] onto the $i$th coordinate in the [[product topological space]] $k^{n+1} = \underset{i \in \{1,\cdots, n\}}{\prod} k$ (where we write $k^n \setminus \{0\} \overset{\iota}{\hookrightarrow} k^n \overset{pr_i}{\to} k$). \end{enumerate} \end{defn} \begin{prop} \label{nSphereAsCoveringSpaceOverRealProjectiveSpace}\hypertarget{nSphereAsCoveringSpaceOverRealProjectiveSpace}{} \textbf{([[n-sphere]] projecting to real projective space is [[covering space]] projection)} For $n \in \mathbb{N}$, the [[continuous function]] $p \;\colon\; S^n \to \mathbb{R}P^n$ from prop. \ref{QuotientOfnSphereTopologicalProjectiveSpace} is a [[covering space]] projection. \end{prop} \begin{proof} We need to produce an [[open cover]] $\{U_i \subset \mathbb{R}P^n\}_{i \in I}$ such that the restrictions of the projection to this cover are [[homeomorphism|homeomorphic]] over the base to a [[product topological space]] \begin{displaymath} \itexarray{ U_i \times Disc(\mathbb{Z}_2) && \overset{\simeq}{\longrightarrow} && S^n|_{U_i} \\ & \searrow && \swarrow \\ && U_i } \,. \end{displaymath} Consider the standard open cover from def. \ref{TopologicalProjectiveSpaceStandardOpenCover}. Hence $i \in \{1, \cdots, n+1\}$ and $U_i$ consists of those lines through the origin in $\mathbb{R}^{n+1}$ which do not lie in the subspace defined by $x_i = 0$. The intersection of this subspace with the unit sphere $S^n \subset \mathbb{R}^{n+1}$ is an [[equator]] of the $n$-sphere, and so the [[complement]] of this equator is the [[disjoint union]] of the two open [[hemispheres]] $D_i^\pm \subset S^n$. Hence \begin{displaymath} \itexarray{ S^n\vert_{U_i} & \simeq D_i^+ \sqcup D_i^- } \,. \end{displaymath} Moreover, each line in $\mathbb{R}^{n+1}$ which corresponds to an element in $U_i$ intersects $D^+_i$ as well as $D^-_i$ exactly once. In particular therefore the $\mathbb{Z}_2$-action on $S^n$ restricts over $U_i$ to the interchange of these two hemispheres, and hence prop. \ref{QuotientOfnSphereTopologicalProjectiveSpace} gives the required homeomorphism as above. \end{proof} \begin{prop} \label{ProjectiveSpaceOpenCoverIsAtlas}\hypertarget{ProjectiveSpaceOpenCoverIsAtlas}{} \textbf{(standard open cover is [[atlas]])} The charts of the standard open cover of def. \ref{TopologicalProjectiveSpaceStandardOpenCover} are [[homomorphism|homeomorphic]] to [[Euclidean space]] $k^n$. \end{prop} \begin{proof} If $x_i \neq 0$ then \begin{displaymath} [x_1 : \cdots : x_i : \cdots : x_{n+1}] = \left[ \frac{x_1}{x_i} : \cdots : 1 : \cdots \frac{x_{n+1}}{x_i} \right] \end{displaymath} and the representatives of the form on the right are \emph{unique}. This means that \begin{displaymath} \itexarray{ \mathbb{R}^n &\overset{\phi_i}{\longrightarrow}& U_i \\ (x_1, \cdots, x_{i-1}, x_{i+1}, \cdots, x_{n+1}) &\mapsto& [x_1: \cdots: 1: \cdots : x_n+1] } \end{displaymath} is a bijection of sets. To see that this is a [[continuous function]], notice that it is the composite \begin{displaymath} \itexarray{ && \mathrlap{\mathbb{R}^{n+1} \setminus \{x_i = 0\}} \\ & {}^{\mathllap{\hat \phi_i}}\nearrow & \downarrow \\ \mathbb{R}^n & \underset{\phi_i}{\longrightarrow} & U_i } \end{displaymath} of the function \begin{displaymath} \itexarray{ \mathbb{R}^n &\overset{\hat \phi_i}{\longrightarrow}& \mathbb{R}^{n+1} \setminus \{x_i = 0\} \\ (x_1, \cdots, x_{i-1}, x_{i+1}, \cdots, x_{n+1}) &\mapsto& (x_1, \cdots, 1, \cdots ,x_n+1) } \end{displaymath} with the quotient projection. Now $\hat \phi_i$ is a [[polynomial]] function and since [[polynomials are continuous]], and since the projection to a [[quotient topological space]] is continuous, and since composites of continuous functions are continuous, it follows that $\phi_i$ is continuous. It remains to see that also the [[inverse function]] $\phi_i^{-1}$ is continuous. Since \begin{displaymath} \itexarray{ \mathbb{R}^{n+1} \setminus \{x_i = 0\} &\overset{}{\longrightarrow}& U_i &\overset{\phi_i^{-1}}{\longrightarrow}& \mathbb{R}^n \\ (x_1, \cdots, x_{n+1}) && \mapsto && ( \frac{x_1}{x_i}, \cdots, \frac{x_{i-1}}{x_i}, \frac{x_{i+1}}{x_i}, \cdots , \frac{x_{n+1}}{x_i}) } \end{displaymath} is a [[rational function]], and since [[rational functions are continuous]], it follows, by nature of the [[quotient topology]], that $\phi_i$ takes open subsets to open subsets, hence that $\phi_i^{-1}$ is continuous. \end{proof} \begin{prop} \label{SmoothManifoldRealComplexProjectiveSpace}\hypertarget{SmoothManifoldRealComplexProjectiveSpace}{} \textbf{(real/complex projective space is [[smooth manifold]])} For $k \in \{\mathbb{R}, \mathbb{C}\}$ the topological projective space $k P^n$ (def. \ref{TopologicalProjectiveSpace}) is a [[topological manifold]]. Equipped with the standard open cover of def. \ref{TopologicalProjectiveSpaceStandardOpenCover} regarded as an [[atlas]] by prop. \ref{ProjectiveSpaceOpenCoverIsAtlas}, it is a [[differentiable manifold]], in fact a [[smooth manifold]]. \end{prop} \begin{proof} By prop. \ref{ProjectiveSpaceOpenCoverIsAtlas} $k P^n$ is a [[locally Euclidean space]]. Moreover, $kP^n$ admits the structure of a [[CW-complex]] (by prop. \ref{CellComplexStructureOnTopologicalProjectiveSpace}) and therefore it is a [[paracompact Hausdorff space]] since [[CW-complexes are paracompact Hausdorff spaces]]. This means that it is a [[topological manifold]]. It remains to see that the [[gluing functions]] of this atlas are [[differentiable functions]] and in fact [[smooth functions]]. But by prop. \ref{ProjectiveSpaceOpenCoverIsAtlas} they are even [[rational functions]]. \end{proof} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[projective plane]] \item [[projective variety]] \item [[Grassmannian]] \item [[projective geometry]], [[synthetic projective geometry]] \item [[projective linear group]] \item [[tautological line bundle]] \item [[projective bundle]] \item [[affine space]], [[conical space]] \item [[direction of a vector]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[August Ferdinand Möbius]], \emph{Der barycentrische Calc\"u{}l} (1827) \end{itemize} An introduction to projective spaces over the theory of ordinary commutative rings is in \begin{itemize}% \item Miles Reid, \emph{Graded rings and varieties in weighted projective space} (\href{http://www.warwick.ac.uk/~masda/surf/more/grad.pdf}{pdf}) \item [[Aurelio Carboni]], [[Marco Grandis]] , \emph{Categories of projective spaces} , JPAA \textbf{110} (1996) pp.241-258. \end{itemize} [[!redirects projective spaces]] [[!redirects homogeneous coordinates]] \end{document}