\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{projectively cofibrant diagram} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{model_category_theory}{}\paragraph*{{Model category theory}}\label{model_category_theory} [[!include model category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{for_specific_diagram_shapes}{For specific diagram shapes}\dotfill \pageref*{for_specific_diagram_shapes} \linebreak \noindent\hyperlink{for_specific_ambient_model_categories}{For specific ambient model categories}\dotfill \pageref*{for_specific_ambient_model_categories} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $\mathcal{C}$ be a ([[cofibrantly generated model category|cofibrantly generated]]) [[model category]] and let $\mathcal{D}$ be any [[category]], regarded as a [[diagram]]-shape in the following. Write $[\mathcal{D}, \mathcal{C}]_{proj}$ for the [[projective model structure]] on the [[functor category]] of [[functors]] from $\mathcal{D}$ to $\mathcal{C}$, hence of $\mathcal{D}$-[[diagrams]] in $\mathcal{C}$. \begin{defn} \label{ProjectivelyCofibrantDiagram}\hypertarget{ProjectivelyCofibrantDiagram}{} A functor/diagram $X : \mathcal{D} \to \mathcal{C}$ is a \textbf{projectively cofibrant diagram} in $\mathcal{C}$ if it is a [[cofibrant object]] in the [[projective model structure]] $[\mathcal{D}, \mathcal{C}]_{proj}$. \end{defn} \begin{remark} \label{}\hypertarget{}{} We unwind the condition in def. \ref{ProjectivelyCofibrantDiagram}. First of all it says of course that a [[diagram]] $X \colon \mathcal{D}\to \mathcal{C}$ is projectively cofibrant precisely if the inclusion $\emptyset \to X$ of the [[initial object|initial]] diagram has the [[left lifting property]] with respect to [[natural transformations]] of diagrams \begin{displaymath} (A \stackrel{p}{\to} B) : \mathcal{C} \to \mathcal{D} \end{displaymath} which are projective acyclic fibrations, hence which are such that for each $c \in \mathcal{C}$ the component $\eta_c : A(c) \to B(c)$ is an acyclic fibration in $\mathcal{C}$. This in turn means that $F$ is projectively cofibrant precisely if for every diagram of natural transformations \begin{displaymath} \itexarray{ &&A \\ & &\downarrow^{\mathrlap{p}} \\ X &\to& B } \end{displaymath} with $p$ as above, there exists a lift $\sigma$ in \begin{displaymath} \itexarray{ &&A \\ & {}^{\mathllap{\sigma}}\nearrow &\downarrow^{\mathrlap{p}} \\ X &\to& B } \;\;\;\;\;\; \in [\mathcal{D}, \mathcal{C}] \,. \end{displaymath} making the triangle commute. \end{remark} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} The main point of projectively cofibrant diagrams is that the ordinary [[colimit]] over them is a presentation of the [[homotopy colimit]]: because the ([[colimit]] $\dashv$ constant diagram)-[[adjunction]] \begin{displaymath} (\underset{\longrightarrow}{\lim} \dashv const) : \mathcal{C} \stackrel{\overset{\underset{\longrightarrow}{\lim}}{\leftarrow}}{\underset{const}{\to}} [\mathcal{C}, \mathcal{D}] \end{displaymath} is a [[Quillen adjunction]] (because $const$ is by the very definition of the [[projective model structure]] a [[right Quillen functor]]), the [[homotopy colimit]], being the left [[derived functor]] $\mathbb{L}\underset{\longrightarrow}{\lim}$ of the [[colimit]], is computed as the ordinary colimit evaluated on a cofibrant resolution $Q X$ of a diagram $X : \mathcal{D} \to \mathcal{C}$: \begin{displaymath} (\mathbb{L} \underset{\longrightarrow}{\lim})(X) \simeq \underset{\longrightarrow}{\lim})(Q X) \,. \end{displaymath} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{for_specific_diagram_shapes}{}\subsubsection*{{For specific diagram shapes}}\label{for_specific_diagram_shapes} \begin{example} \label{}\hypertarget{}{} A \emph{[[span]]} diagram $X_1 \leftarrow X_0 \to X_1$ is projectively cofibrant precisely if the two morphisms are cofibrations in $\mathcal{D}$ and $X_0$, hence all three objects, are cofibrant. The colimit over such a diagram is the [[homotopy pushout]] of the span. \end{example} \begin{example} \label{CofibrantCotowerDiagram}\hypertarget{CofibrantCotowerDiagram}{} A \emph{cotower} diagram \begin{displaymath} X_0 \to X_1 \to X_2 \to \cdots \end{displaymath} is projectively cofibrant precisely if every morphism is a cofibration and if the first object $X_0$, and hence all objects, are cofibrant in $\mathcal{D}$. The colimit over such a diagram is a homotopy [[sequential colimit]]. \end{example} \begin{example} \label{}\hypertarget{}{} A \emph{[[parallel morphisms]]} diagram \begin{displaymath} X_0 \stackrel{\overset{f}{\to}}{\underset{g}{\to}} X_1 \end{displaymath} is projectively cofibrant precisely if $X_0$ is cofibrant, and if the morphism $(f,g) : X_0 \coprod X_0 \to X_1$ is a cofibration. This implies that also $f$ and $g$ are cofibrations and hence that $X_1$ is cofibrant. \end{example} The colimit over such a diagram is a homotopy [[coequalizer]]. \hypertarget{for_specific_ambient_model_categories}{}\subsubsection*{{For specific ambient model categories}}\label{for_specific_ambient_model_categories} Let $\mathcal{C} =$ [[sSet]]${}_{Quillen}$ be the standard [[model structure on simplicial sets]]. Then $[\mathcal{D}, \mathcal{C}]_{proj}$ is the projective [[model structure on simplicial presheaves]]. For the following see at \emph{[[model structure on simplicial presheaves]]} the section \emph{\href{model+structure%20on%20simplicial%20presheaves#CofibrantObjects}{Cofibrant objects}} for more details (due to [[Dan Dugger]]). \begin{prop} \label{}\hypertarget{}{} A sufficient condition for a diagram $X : \mathcal{D} \to sSet$ to be projectively cofibrant is: \begin{enumerate}% \item $X$ is degreewise a coproducts of [[representable functor|representables]] \begin{displaymath} X_n = \coprod_{i} U^n_i \;\;\;\; \{U^n_i \in \mathcal{C} \hookrightarrow [\mathcal{C}, Set]\} \end{displaymath} \item the degenerate cells in each degree form a separate [[coproduct]] summand; \begin{displaymath} X_n = NonDegenerate \coprod Degenerate \,. \end{displaymath} \end{enumerate} \end{prop} \begin{example} \label{}\hypertarget{}{} A \emph{[[split hypercover]]} is of this form. \end{example} \begin{prop} \label{}\hypertarget{}{} For $X : \mathcal{D} \to sSet$ any simplicial presheaf, a cofibrant [[resolution]] is given by \begin{displaymath} (Q X)_n : \coprod_{U_0 \to \cdots \to U_n \to X_n} U_0 \,, \end{displaymath} where the coproduct runs over all sequences of morphisms between representables $U_i$, as indicated. \end{prop} \hypertarget{references}{}\subsection*{{References}}\label{references} See the references at \emph{[[homotopy colimit]]} and generally at \emph{[[model category]]}. Related discussion is at \begin{itemize}% \item MathOverflow \emph{\href{http://mathoverflow.net/questions/70612/when-are-diagrams-of-cofibrations-projectively-cofibrant}{When are ``diagrams of cofibrations'' projectively cofibrant}} \end{itemize} Related discussion is for instance also in \begin{itemize}% \item Urs Schreiber, \emph{[[schreiber:differential cohomology in a cohesive topos]]} \end{itemize} where cofibrant cotowers are mentioned as example 2.3.15. [[!redirects projectively cofibrant diagrams]] \end{document}