\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{promonoidal category} \hypertarget{promonoidal_categories}{}\section*{{Promonoidal categories}}\label{promonoidal_categories} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{versus_monoidal_categories}{Versus monoidal categories}\dotfill \pageref*{versus_monoidal_categories} \linebreak \noindent\hyperlink{day_convolution}{Day convolution}\dotfill \pageref*{day_convolution} \linebreak \noindent\hyperlink{versus_multicategories}{Versus multicategories}\dotfill \pageref*{versus_multicategories} \linebreak \noindent\hyperlink{notes}{Notes}\dotfill \pageref*{notes} \linebreak \noindent\hyperlink{related_pages}{Related pages}\dotfill \pageref*{related_pages} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \textbf{promonoidal category} is like a [[monoidal category]] in whose structure (namely, tensor product and unit object) we have replaced [[functors]] by [[profunctors]]. It is a categorification of the idea of a [[boolean algebra]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A \textbf{promonoidal category} is a [[pseudomonoid]] in the [[monoidal bicategory]] [[Prof]]. This means that it is a [[category]] $A$ together with \begin{itemize}% \item A profunctor $P \colon A\times A ⇸ A$. \item A profunctor $J\colon 1$ $A$. \item Associativity and unit isomorphisms $P \odot (P\times 1) \cong P\odot (1\times P)$, $P\odot (J\times 1) \cong 1$, and $P\odot (1\times J) \cong 1$. \item The usual pentagon and unit conditions hold, as in a [[monoidal category]]. \end{itemize} Recalling that a profunctor $A$ $B$ is defined to be a functor $B^{op}\times A \to Set$, we can make this more explicit. We can also generalize it by replacing $Set$ by a [[Benabou cosmos]] $V$ and $A$ by a $V$-[[enriched category]]; then a profunctor is a $V$-functor $B^{op}\times A \to V$. Thus, we obtain the following as an explicit definition of \textbf{promonoidal $V$-category}: we have the following data \begin{enumerate}% \item A $V$-category $A$. \item A $3$-ary functor $P:A^\op \otimes A \otimes A\to V$. For notational clarity, we may write $P(a,b,c)$ as $P(a,b \diamond c)$. \item A $V$-functor $J:A^{op}\to V$. \end{enumerate} and natural isomorphisms \begin{enumerate}% \item $\lambda_{ab}:\int^x (J(x) \otimes P(b,a \diamond x))\to A(b,a)$ \item $\rho_{ab}: \int^x ( J(x)\otimes P(b,x \diamond a))\to A(b,a)$ \item $\alpha_{abcd}: \int^x (P(x,a\diamond b)\otimes P(d,x\diamond c)) \to \int^x(P(x,b\diamond c)\otimes P(d,a\diamond x))$ \end{enumerate} satisfying the pentagon and unit axioms. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{versus_monoidal_categories}{}\subsubsection*{{Versus monoidal categories}}\label{versus_monoidal_categories} Since any functor induces a representable profunctor, any monoidal category can be regarded as a promonoidal category. A given promonoidal category arises in this way if and only if the profunctors $P$ and $J$ are representable. \hypertarget{day_convolution}{}\subsubsection*{{Day convolution}}\label{day_convolution} A promonoidal structure on $A$ suffices to induce a monoidal structure on $V^{A^{op}}$ by [[Day convolution]]. In fact, given a small $V$-category $A$, there is an equivalence of categories between \begin{enumerate}% \item the category of pro-monoidal structures on $A$, with strong pro-monoidal functors between them, and \item the category of biclosed monoidal structures on $V^{A^{op}}$, with strong monoidal functors between them. \end{enumerate} \hypertarget{versus_multicategories}{}\subsubsection*{{Versus multicategories}}\label{versus_multicategories} A promonoidal structure on $A$ can be identified with a particular sort of [[multicategory]] structure on $A^{op}$, i.e. with a co-multicategory structure on $A$. The set $P(x, y, z)$ is regarded as the set of co-multimorphisms $x \to (y,z)$. More generally, we define a co-multicategory $\bar A$ as follows. The objects of $\bar A$ are the objects of $A$. The co-multimorphisms $b\to a_1\dots a_n$ in $\bar A$ are defined by induction on $n$ as follows: $\bar A(b;)=Jb$, and $\bar A(b;a_1,\dots,a_{n+1})=\int^x\bar A(x;a_1,\dots,a_n)\otimes P(b,x\diamond a_{n+1})$. Not every co-multicategory arises from a promonoidal one in this way. Roughly, a promonoidal category is a co-multicategory whose $n$-ary co-multimorphisms are determined by the binary, unary, and nullary morphisms. In general, co-multicategories can be identified with a certain sort of ``lax promonidal category''. \hypertarget{notes}{}\subsection*{{Notes}}\label{notes} [[Brian Day]] introduced the notion of a ``premonoidal'' category in \hyperlink{Day70}{(Day 1970)}, and later renamed this to a ``promonoidal'' category in \hyperlink{Day74}{(Day 1974)} while reformulating the identity and associativity isomorphisms $\lambda,\rho,\alpha$ explicitly in terms of profunctor composition. However, note that his definition is op'd from the definition used in this article, in the sense that a Day-promonoidal structure on a category $C$ corresponds to a pseudomonoid structure on $C^{op}$ in [[Prof]]. In particular, one example Day considers is that of a [[closed category]], which is actually a co-promonoidal category in the sense used here (analogous to the co-promonoidal structure on a multicategory described above). Regarding monoidal categories as promonoidal is useful in order to express extra structure on them, such as [[closed monoidal category|closedness]], [[star-autonomous category|$\ast$-autonomy]], or [[compact closed category|compact closedness]], in abstract bicategorical terms: these notions can be defined by adding extra structure to a [[pseudomonoid]] in the [[monoidal bicategory]] [[Prof]] (i.e. a promonoidal category), but the extra structure does not lie inside the sub-monoidal bicategory [[Cat]]. \hypertarget{related_pages}{}\subsection*{{Related pages}}\label{related_pages} \begin{itemize}% \item [[monoidal category]], [[multicategory]] \item [[Day convolution]] \item A (co-)promonoidal [[poset]] is called a [[ternary frame]], when its Day convolution monoidal category is used to model [[substructural logic]]. \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Brian Day]], On closed categories of functors, \emph{Lecture Notes in Mathematics} 137 (1970), 1-38. \item [[Brian Day]], An embedding theorem for closed categories, \emph{Lecture Notes in Mathematics} 420 (1974), 55-64. \item Day, Panchadcharam and Street, \emph{On centres and lax centres for promonoidal categories}. \end{itemize} [[!redirects promonoidal categories]] [[!redirects pro-monoidal category]] [[!redirects pro-monoidal categories]] [[!redirects promonoidal structure]] [[!redirects pro-monoidal structure]] [[!redirects promonoidal structures]] [[!redirects pro-monoidal structures]] \end{document}