\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{proper geometric morphism} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{Topos Theory}}\label{topos_theory} [[!include topos theory - contents]] \hypertarget{compact_objects}{}\paragraph*{{Compact objects}}\label{compact_objects} [[!include compact object - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{Definition}{Definition}\dotfill \pageref*{Definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{stability_and_closure_properties}{Stability and closure properties}\dotfill \pageref*{stability_and_closure_properties} \linebreak \noindent\hyperlink{properness_and_beckchevalley_conditions}{Properness and Beck-Chevalley conditions}\dotfill \pageref*{properness_and_beckchevalley_conditions} \linebreak \noindent\hyperlink{CompactSites}{Compact sites}\dotfill \pageref*{CompactSites} \linebreak \noindent\hyperlink{StronglyCompactSites}{Strongly compact sites}\dotfill \pageref*{StronglyCompactSites} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{compact_toposes}{Compact toposes}\dotfill \pageref*{compact_toposes} \linebreak \noindent\hyperlink{StronglyCompactToposes}{Strongly compact toposes}\dotfill \pageref*{StronglyCompactToposes} \linebreak \noindent\hyperlink{finite_objects}{Finite objects}\dotfill \pageref*{finite_objects} \linebreak \noindent\hyperlink{GeometricStacks}{Geometric stacks}\dotfill \pageref*{GeometricStacks} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{References}{References}\dotfill \pageref*{References} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The notion of \emph{compact topos} is the generalization from [[topology]] to [[topos theory]] of the notion of \emph{[[compact topological space]]}. More generally, over a general [[base topos]], the notion of \emph{proper geometric morphism} is the generalization to morphisms between toposes of the notion of \emph{[[proper map]]} between [[topological spaces]]. \hypertarget{Definition}{}\subsection*{{Definition}}\label{Definition} \begin{defn} \label{CompactTopos}\hypertarget{CompactTopos}{} A [[sheaf topos]] $\mathcal{E}$ is called a \textbf{[[compact topos]]} if the [[direct image]] of the [[global section geometric morphism]] $\Gamma : \mathcal{E} \to Set$ preserves [[directed colimit|directed]] [[joins]] of [[subterminal objects]]. A [[geometric morphism]] $f : \mathcal{F} \to \mathcal{E}$ is called \textbf{proper} if it exhibits $\mathcal{F}$ as a [[compact topos]] over $\mathcal{E}$. (The [[stack semantics]] of $\mathcal{E}$ can be used to formalize this.) \end{defn} \begin{defn} \label{StronglyCompactTopos}\hypertarget{StronglyCompactTopos}{} A topos is called \textbf{strongly compact} if $\Gamma$ commutes even with all [[filtered colimits]]. A geometric morphism $f : \mathcal{F} \to \mathcal{E}$ is called \textbf{tidy} if it exhibits $\mathcal{F}$ as a strongly compact topos over $\mathcal{E}$. \end{defn} (\hyperlink{MoerdijkVermeulen}{MV, p. 53}) This are the first stages of a notion that in [[(∞,1)-topos theory]] continue as follows \begin{defn} \label{StronglyCompactTopos}\hypertarget{StronglyCompactTopos}{} Let $\kappa$ be a [[regular cardinal]] and $-1 \leq n \leq \infty$. Then an [[(∞,1)-topos]] is \emph{$\kappa$-compact of height $n$} if the [[global section geometric morphism]] preserves $\kappa$-[[filtered (∞,1)-category|filtered]] [[(∞,1)-colimits]] of [[n-truncated]] objects. Accordingly a geometric morphism is \emph{$\kappa$-proper of height $n$} if it exhibits a $\kappa$-compact of height $n$ $(\infty,1)$-topos over a [[base (∞,1)-topos]]. \end{defn} In this terminology \begin{itemize}% \item a topos \emph{compact of height (-1)} is the same as a \emph{compact topos}; \item a topos \emph{compact of height 0} is the same as a \emph{strongly compact topos}; \end{itemize} \begin{remark} \label{}\hypertarget{}{} An [[n-coherent (∞,1)-topos]] is compact of height $n$ in the sense of def. \ref{StronglyCompactTopos}, this is ([[Rational and p-adic Homotopy Theory|Lurie XIII, prop. 2.3.9]]). \end{remark} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{stability_and_closure_properties}{}\subsubsection*{{Stability and closure properties}}\label{stability_and_closure_properties} \begin{prop} \label{}\hypertarget{}{} \begin{enumerate}% \item Any [[equivalence of categories|equivalence]] is proper and the class of proper maps is closed under composition. \item If in the [[diagram]] \begin{displaymath} \itexarray{ A&\xrightarrow{p}&B \\ \downarrow^f&\swarrow^g \\ C } \end{displaymath} $p$ is a [[surjective geometric morphism]] and $f$ is proper then so is $g$. \item If $h$ is proper and $g$ is a [[geometric embedding]] then $p$ is proper. \item Any [[hyperconnected geometric morphism]] is proper. \item $f:F\to G$ is proper iff its [[localic reflection]] $Sh_G(X)\to G$ is, i.e. iff $X$ is a [[compact locale|compact]] [[internal locale]] in $G$. \item If in a pullback square the bottom morphism is open and surjective and the left morphism is proper then so is the right. \end{enumerate} \end{prop} (\hyperlink{MoerdijkVermeulen}{VM, I.1, I.2}) \begin{prop} \label{}\hypertarget{}{} The [[pullback]] of a proper geometric morphism is again proper. The pullback of a tidy geometric morphism is again tidy. \end{prop} (\hyperlink{MoerdijkVermeulen}{VM, theorem 5.8}) \hypertarget{properness_and_beckchevalley_conditions}{}\subsubsection*{{Properness and Beck-Chevalley conditions}}\label{properness_and_beckchevalley_conditions} A [[geometric morphism]] $f$ of toposes is said to satisfy the \emph{stable} (weak) Beck-Chevalley condition if any pullback of $f$ satisfies the (weak) [[Beck-Chevalley condition]] ((weak)BCC). \begin{prop} \label{}\hypertarget{}{} A map satisfies the stable weak BCC iff it is proper. \end{prop} (\hyperlink{MoerdijkVermeulen}{MV, Corollary I.5.9}) \hypertarget{CompactSites}{}\subsubsection*{{Compact sites}}\label{CompactSites} We discuss classes of [[sites]] such that their [[sheaf topos]] is a compact topos, def. \ref{CompactTopos} (\hyperlink{MoerdijkVermeulen}{VM, I.5}). (\ldots{}) \hypertarget{StronglyCompactSites}{}\subsubsection*{{Strongly compact sites}}\label{StronglyCompactSites} We discuss classes of [[sites]] such that their [[sheaf topos]] is a strongly compact topos, def. \ref{CompactTopos} (\hyperlink{MoerdijkVermeulen}{VM, III.4}). (\ldots{}) \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{compact_toposes}{}\subsubsection*{{Compact toposes}}\label{compact_toposes} \begin{prop} \label{}\hypertarget{}{} Let $\mathbf{H}$ be a [[topos]] and $X \in \mathbf{H}$ an [[object]]. If \begin{itemize}% \item $X$ is a ``[[compact topological space]]-object'' in that: for every set of morphisms $\{U_i \to X\}_{i \in I}$ such that $\coprod_{i \in I} U_i \to X$ is an [[effective epimorphism]], there is a [[finite set|finite subset]] $J \subset I$ such that $\coprod_{i \in J} U_i \to X$ is still an [[effective epimorphism]]; \end{itemize} then \begin{itemize}% \item The [[slice topos]] $\mathbf{H}_{/X}$ is a compact topos, def. \ref{CompactTopos}. \end{itemize} \end{prop} \begin{remark} \label{}\hypertarget{}{} Beware that $X$ being a ``compact topological space-object'' is different from it being a [[compact object]] (the difference being that between compactness of height (-1) and height 0). For the latter case see prop. \ref{SliceOverCompactIsStronglyCompact} below. \end{remark} \begin{proof} The [[terminal object]] of $\mathbf{H}_{/X}$ is the [[identity]] $id_X : X \to X$ in $\mathbf{H}$. A [[subterminal object]] of $\mathbf{H}_{/X}$ is a [[monomorphism]] $U \hookrightarrow X$ in $\mathbf{H}$. The [[global section geometric morphism]] $\Gamma_X : \mathbf{H}_{/X} \to Set$ sends an object $[E \to X]$ to its set of [[sections]] \begin{displaymath} \Gamma_X([E \to X]) = \mathbf{H}(X, E) \times_{\mathbf{H}(X,X)} \{id_X\} \,. \end{displaymath} Therefore it sends all subterminal object in $\mathbf{H}_{/X}$ to the [[empty set]] except the terminal object $X$ itself, which is sent to the singleton set. So let $X$ now be a compact-topological-space-object and $U_\bullet : I \to \mathbf{H}_{/X}$ is directed system of subterminals. If their union $\vee_i U_i$ does not cover $X$, then $\Gamma_X(\vee_i U_i) = \emptyset$. But then also none of the $U_i$ can be $X$ itself, and hence also $\Gamma_X(U_i) = \emptyset$ for all $i \in I$ and so $\vee_i \Gamma_X(U_i) = \emptyset$. On the other hand, if $\vee_i U_i = X$ then the $\{U_i \to X\}_{i \in I}$ form a cover, hence then by assumption there is a finite subset $\{U_i \to X\}_{i \in J}$ which still covers. By the assumption that the system $U_\bullet$ is a [[directed set]] it also contains the union $X = \vee_{i \in J} U_i$. Therefore $\vee_{i \in I} \Gamma_X(U_i) = \Gamma_X(X) = *$ is the singleton, as is $\Gamma_X(\vee_{i \in I} U_i) = \Gamma_X(X)$. So $\Gamma_X$ preserves directed unions of subterminals and hence $\mathbf{H}_{/X}$ is a compact topos. \end{proof} \hypertarget{StronglyCompactToposes}{}\subsubsection*{{Strongly compact toposes}}\label{StronglyCompactToposes} The following propositions say in summary that \begin{enumerate}% \item the \emph{[[petit topos]]} over a [[compact topological space]] that is also [[Hausdorff topological space|Hausdorff]] is strongly compact. \item the \emph{[[gros topos]]} over a [[compact object]] is strongly compact. \end{enumerate} See also (\hyperlink{MoerdijkVermeulen}{VM, III.1}). \begin{prop} \label{}\hypertarget{}{} Examples of strongly compact toposes $\mathcal{E}$, def. \ref{StronglyCompactTopos}, include the following. \begin{enumerate}% \item Every [[coherent topos]] is strongly compact. \item The [[sheaf topos]] over a [[compact topological space|compact]] [[Hausdorff space|Hausdorff]] [[topological space]] is strongly compact. \end{enumerate} \end{prop} (\hyperlink{MoerdijkVermeulen}{MV, Examples III.1.1}) \begin{prop} \label{SliceOverCompactIsStronglyCompact}\hypertarget{SliceOverCompactIsStronglyCompact}{} Let $\mathbf{H}$ be a topos over [[Set]] and $X \in \mathbf{H}$ an object. Then the following are equivalent \begin{enumerate}% \item $X$ is a [[compact object]] (in the sense that the [[hom functor]] $\mathbf{H}(X,-)$ preserves [[filtered colimits]]) \item the [[slice topos]] $\mathbf{H}_{/X}$ is strongly compact, def. \ref{StronglyCompactTopos}. \end{enumerate} \end{prop} \begin{proof} The [[direct image]] $\Gamma_X$ of the [[global section geometric morphism]] \begin{displaymath} ((-) \times X \dashv \Gamma_X) : \mathbf{H}_{/X} \stackrel{\overset{(-) \times X}{\leftarrow}}{\underset{\mathbf{\Gamma}_X}{\to}} \mathbf{H} \stackrel{\overset{\Delta}{\leftarrow}}{\underset{\mathbf{H}(*,-)}{\to}} Set \end{displaymath} is given by the [[hom functor]] out of the [[terminal object]]. The terminal object in $\mathbf{H}_{/X}$ is the [[identity]] [[morphism]] $id_X : X \to X$. So the terminal geometric morphism takes any $[E \to X]$ in $\mathbf{H}_{/X}$ to the set of [[sections]], given by the [[pullback]] of the [[hom set]] along the inclusion of the [[identity]] \begin{displaymath} \Gamma_X([E \to X]) = \mathbf{H}(X,E) \times_{\mathbf{H}(X,X)} \{id\} \,. \end{displaymath} By the discussion at \emph{\href{overcategory#LimitsAndColimits}{overcategory -- limits and colimits}} we have that [[colimits]] in $\mathbf{H}_{/X}$ are computed in $\mathbf{H}$. So if $[E \to X] \simeq \underset{\longrightarrow_i}{\lim}{[E_i \to X]}$ is a [[filtered colimit]] in $\mathbf{H}_{/X}$, then $E \simeq \underset{\longrightarrow_i}{\lim}{E_i }$ is a filtered colimit in $\mathbf{H}$. If now $X \in \mathbf{H}$ is a [[compact object]], then this commutes over this colimit and hence \begin{displaymath} \begin{aligned} \Gamma_X([E \to X]) &= \mathbf{H}(X,\underset{\longrightarrow_i}{\lim} E_i) \times_{\mathbf{H}(X,X)} \{id\} \\ & \simeq (\underset{\longrightarrow_i}{\lim}\mathbf{H}(X, E_i)) \times_{\mathbf{H}(X,X)} \{id\} \\ &\simeq \underset{\longrightarrow_i}{\lim} (\mathbf{H}(X, E_i) \times_{\mathbf{H}(X,X)} \{id\}) \\ & \simeq \underset{\longrightarrow_i}{\lim} \Gamma_X([E_i \to X]) \end{aligned} \,, \end{displaymath} where in the second but last step we used that in the [[topos]] [[Set]] [[universal colimits|colimits are preserved by pullback]]. This shows that $\Gamma_X(-) : \mathbf{H}_{/X} \to Set$ commutes over filtered colimits if $X$ is a [[compact object]]. Conversely, assume that $\Gamma_X(-)$ commutes over all filtered colimits. For every ([[filtered category|filtered]]) [[diagram]] $F_\bullet : I \to \mathbf{H}$ there is the corresponding filtered diagram $X \times F_\bullet : I \to \mathbf{H}_{/X}$, where $[X \times F_i \to X]$ is the projection. As before, the product with $X$ preserves forming colimits \begin{displaymath} \underset{\longrightarrow_i}{\lim} ([X \times F_i \to X]) \simeq [X \times (\underset{\longrightarrow_i}{\lim} F_i) \to X] \,. \end{displaymath} Moreover, sections of a trivial [[bundle]] are maps into the fiber \begin{displaymath} \Gamma_X([X \times F_i \to X]) \simeq \mathbf{H}(X,F_i) \,. \end{displaymath} So it follows that $X$ is a compact object: \begin{displaymath} \begin{aligned} \mathbf{H}(X, \underset{\longrightarrow_i}{\lim} F_i) & \simeq \Gamma_X( [X \times (\underset{\longrightarrow_i}{\lim} F_i) \to X]) \\ & \simeq \Gamma_X(\underset{\longrightarrow_i}{\lim} [X \times F_i \to X]) \\ & \simeq \underset{\longrightarrow_i}{\lim} \Gamma_X( [X \times F_i \to X]) \\ & \simeq \underset{\longrightarrow_i}{\lim} \mathbf{H}(X,F_i) \end{aligned} \,. \end{displaymath} \end{proof} \hypertarget{finite_objects}{}\subsubsection*{{Finite objects}}\label{finite_objects} \begin{prop} \label{}\hypertarget{}{} An object $X \in \mathcal{T}$ in a topos $\mathcal{T}$ is a [[Kuratowski finite object]] precisely if the [[étale geometric morphism]] \begin{displaymath} \mathcal{T}_{/X} \to \mathcal{T} \end{displaymath} out of the [[slice topos]] is a proper geometric morphism. And precisely if $X$ is even \emph{decidable} is this a tidy geometric morphism. \end{prop} (\hyperlink{MoerdijkVermeulen}{Moerdijk-Vermeulen, examples III 1.4}) \hypertarget{GeometricStacks}{}\subsubsection*{{Geometric stacks}}\label{GeometricStacks} A typical condition on a [[geometric stack]] to qualify as an [[orbifold]]/[[Deligne-Mumford stack]] is that its [[diagonal]] be proper. This is equivalent to the corresponding map of toposes being a proper geometric morphism (e.g. \hyperlink{Carchedi12}{Carchedi 12, section 2}, \hyperlink{LurieSpectral}{Lurie Spectral, section 3}). \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[separated geometric morphism]], [[Hausdorff topos]] \end{itemize} \hypertarget{References}{}\subsection*{{References}}\label{References} The theory of proper geometric morphisms is largly due to \begin{itemize}% \item [[Ieke Moerdijk]], Jacob Vermeulen, \emph{Relative compactness conditions for toposes} (\href{https://dspace.library.uu.nl/handle/1874/2374}{pdf}) \item [[Ieke Moerdijk]], Jacob Vermeulen, \emph{Proper maps of toposes} , Memoirs of the American Mathematical Society, no. 705 (2000) \end{itemize} based on the [[locale|localic]] case discussed in \begin{itemize}% \item Jacob Vermeulen, \emph{Proper maps of locales}, J. Pure Applied Alg. 92 (1994) \end{itemize} A textbook account is in section C3.2 of \begin{itemize}% \item [[Peter Johnstone]], \emph{[[Sketches of an Elephant]]} \end{itemize} Discussion with relation to properness of [[geometric stacks]] includes \begin{itemize}% \item [[David Carchedi]], section 2 of \emph{\'E{}tale Stacks as Prolongations} (\href{http://arxiv.org/abs/1212.2282}{arXiv:1212.2282}) \end{itemize} Discussion of higher compactness conditions in [[(∞,1)-topos theory]] is in section 3 of \begin{itemize}% \item [[Jacob Lurie]], \emph{Spectral Schemes} (\href{http://www.math.harvard.edu/~lurie/papers/DAG-VII.pdf}{pdf}) \end{itemize} and in section 2.3 of \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Rational and p-adic Homotopy Theory]]} \end{itemize} and for the special case of [[spectral Deligne-Mumford stacks]] in section 1.4 of \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Quasi-Coherent Sheaves and Tannaka Duality Theorems]]} \end{itemize} [[!redirects proper map of toposes]] [[!redirects proper maps of toposes]] [[!redirects proper geometric morphisms]] [[!redirects compact topos]] [[!redirects strongly compact topos]] [[!redirects compact toposes]] [[!redirects strongly compact toposes]] [[!redirects compact topoi]] [[!redirects strongly compact topoi]] \end{document}