\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{pseudodifferential operator} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{functional_analysis}{}\paragraph*{{Functional analysis}}\label{functional_analysis} [[!include functional analysis - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{definition_of_symbols}{Definition of symbols}\dotfill \pageref*{definition_of_symbols} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{every_differential_operator_is_a_pseudodifferential_operator}{Every differential operator is a pseudodifferential operator}\dotfill \pageref*{every_differential_operator_is_a_pseudodifferential_operator} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{smoothing_theorem}{Smoothing theorem}\dotfill \pageref*{smoothing_theorem} \linebreak \noindent\hyperlink{propagation_of_singularities_theorem}{Propagation of singularities theorem}\dotfill \pageref*{propagation_of_singularities_theorem} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Pseudodifferential operators generalize [[differential operators]] and are of similar importance to the theory of [[partial differential equations]] as [[Schwartz distributions]], see also [[microlocal analysis]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $X \subset \mathbb{R}^n$ be open. A pseudodifferential operator is a [[Fourier integral operator]] of the form \begin{displaymath} A: C^{\infty}_0 (X) \to \mathcal{D}'(X) \end{displaymath} \begin{displaymath} A u(x) = \frac{1}{(2 \pi)^n} \int \int e^{i (x-y) \theta} a(x, y, \theta) u(y) dy d\theta \end{displaymath} where the function $a$, called the \textbf{symbol} of the pseudodifferential operator $A$, belongs to the space $S^m_{\rho, \delta}(X \times X \times \mathbb{R}^n)$ defined below. If $\mathcal{F}$ denotes the [[Fourier transform]] a short hand notation for this definition is $A u = \mathcal{F}^{-1} (a \, \mathcal{F}u)$, put in words: Fourier transform $u$, multiply with $a$ and transform back. \hypertarget{definition_of_symbols}{}\subsection*{{Definition of symbols}}\label{definition_of_symbols} If one allows arbitrary functions as symbols there will be no control of the behaviour of the associated pseudodifferential operators, of course. In order to get a theory where these operators are, for example, continuous with respect to the standard topologies on the [[topological vector space]]s that they are defined on, some assumptions have to be made. Different levels of generality of the theory correspond to different assumptions about the symbols. One standard symbol space is defined as follows: Let $X \subset \mathbb{R}^n$ be open, $0 \le \rho \le 1, 0 \le \delta \le 1, m \in \mathbb{R}, n \in \mathbb{N}, n \neq 0$. \begin{itemize}% \item definition: $S^m_{\rho, \delta}$ is the space of all $a \in C^{\infty}(X \times \mathbb{R}^n)$ such that for all compact $K \Subset X$ and all $\alpha, \beta \in \mathbb{N}^n$ there is a constant $C_{K, \alpha, \beta}$ such that\begin{displaymath} | \partial^{\alpha}_x \, \partial^{\beta}_{\theta} \, a(x, \theta)| \leq C_{K, \alpha, \beta} (1 + | \theta |)^{m - \rho | \beta | + \delta | \alpha |} \end{displaymath} The space $S^m_{\rho, \delta}$ is called the space of \textbf{symbols of order $m$ and of type $(\rho, \delta)$}. \end{itemize} It is easy to see that every space $S^m_{\rho, \delta}$ is a Fr\'e{}chet space: every $X \subset \mathbb{R}^n$ open has a compact exhaustion, that is an increasing sequence $(K_i)$ with each $K_i \Subset X$ compact such that $\bigcup_{i = 1}^{\infty} K_i = X$, and one can define a countable family of seminorms via \begin{displaymath} P_{K_i, \alpha, \beta} = \operatorname{sup}_{(x, \theta) \in K_i \times \mathbb{R}^n} \frac{ | \partial^{\alpha}_x \, \partial^{\beta}_{\theta} \, a(x, \theta)|}{(1 + | \theta |)^{m - \rho | \beta | + \delta | \alpha |}} \end{displaymath} The space of symbols of order $- \infty$ is defined to be \begin{displaymath} S^{- \infty} = \bigcap_{m \in \mathbb{R}} S^m_{\rho, \delta} \end{displaymath} Conversly the symbols of order $\infty$ are defined by \begin{displaymath} S^{\infty} = \bigcup_{m \in \mathbb{R}} S^m_{\rho, \delta} \end{displaymath} Symbols of order $- \infty$ are often called \textbf{smoothing} and their operators \textbf{smoothing operators}. The reason for this is that their pseudodifferential operators map distribution spaces into spaces of smooth functions, for example: \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{every_differential_operator_is_a_pseudodifferential_operator}{}\subsubsection*{{Every differential operator is a pseudodifferential operator}}\label{every_differential_operator_is_a_pseudodifferential_operator} We restrict ourselfes to one dimension for simplicity, let $D := -i \frac{d}{dx}$ and write a differential operator $P$ as \begin{displaymath} P(x, D) := \sum_{k = 0}^n f_n(x) D^k \end{displaymath} with given functions $f_n$. Then $P$ is a pseudodifferential operator with symbol $a(x, y, \theta) = P(x, \theta)$. The symbol of a differential operator therefore is a polynom in $\theta$, which motivates a part of the definition of symbol classes below: We expect that the growth of the symbol in $\theta$ is polynomial at most, and the degree of the bounding polynomial decreases by $1$ if we apply differentiation in $\theta$ to the symbol. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{smoothing_theorem}{}\subsubsection*{{Smoothing theorem}}\label{smoothing_theorem} The pseudodifferential operator of a smoothing symbol maps $\mathcal{E}'$, the [[dual vector space|dual space]] of $C^{\infty}$, into $\mathcal{S}$, the Schwartz space of rapidly decreasing smooth functions. \hypertarget{propagation_of_singularities_theorem}{}\subsubsection*{{Propagation of singularities theorem}}\label{propagation_of_singularities_theorem} \begin{itemize}% \item [[properly supported pseudo-differential operator]] \item [[propagation of singularities theorem]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item Wikipedia on \href{http://en.wikipedia.org/wiki/Pseudo-differential_operator}{pseudodifferential operator} \end{itemize} An elementary and short introduction can be found here: \begin{itemize}% \item Xavier Saint Raymond: \emph{Elementary Introduction to the Theory of Pseudodifferential Operators} (\href{http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0847.47035&format=complete}{ZMATH entry}) \item Sylvain Carpentier, Alberto De Sole, [[Victor G. Kac]], \emph{Some algebraic properties of differential operators}, \href{http://arxiv.org/abs/1201.1992}{arxiv/1201.1992} \item [[Lars Hörmander]], \emph{The analysis of linear partial differential operators}, in 4 vols.: I. Distribution theory and Fourier analysis, II. Differential operators with constant coefficients, III. Pseudo-differential operators, IV. Fourier integral operators. \end{itemize} [[!redirects pseudodifferential operators]] [[!redirects pseudo-differential operator]] [[!redirects pseudo-differential operators]] \end{document}