\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{pullback} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{limits_and_colimits}{}\paragraph*{{Limits and colimits}}\label{limits_and_colimits} [[!include infinity-limits - contents]] \hypertarget{equality_and_equivalence}{}\paragraph*{{Equality and Equivalence}}\label{equality_and_equivalence} [[!include equality and equivalence - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{in_category_theory}{In category theory}\dotfill \pageref*{in_category_theory} \linebreak \noindent\hyperlink{in_type_theory}{In type theory}\dotfill \pageref*{in_type_theory} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{saturation}{Saturation}\dotfill \pageref*{saturation} \linebreak \noindent\hyperlink{PullbackFunctor}{Pullback functor}\dotfill \pageref*{PullbackFunctor} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In the [[category]] [[Set]] a `pullback' is a [[subset]] of the [[cartesian product]] of two [[sets]]. Given a [[diagram]] of [[sets]] and [[functions]] like this: \begin{displaymath} \itexarray{ && A &&&& B \\ & && {}_{f}\searrow & & \swarrow_g && \\ &&&& C &&&& } \end{displaymath} the `pullback' of this diagram is the [[subset]] $X \subseteq A \times B$ consisting of pairs $(a,b)$ such that the [[equation]] $f(a) = g(b)$ holds. A pullback is therefore the [[categorical semantics]] of an \emph{[[equation]]}. This construction comes up, for example, when $A$ and $B$ are [[fiber bundles]] over $C$: then $X$ as defined above is the [[product]] of $A$ and $B$ in the category of fiber bundles over $C$. For this reason, a pullback is sometimes called a \textbf{fibered product} (or \emph{fiber product} or \emph{fibre product}). In this case, the fiber of $A \times_C B$ over a [[generalized element|(generalized)]] element $x$ of $C$ is the ordinary [[product]] of the fibers of $A$ and $B$ over $x$. In other words, the fiber product is the product taken fiber-wise. Of course, the fiber of $A$ at the generalized element $x\colon I \to C$ is itself a fibre product $I \times_C A$; the terminology depends on your point of view. Note that there are maps $p_A : X \to A$, $p_B : X \to B$ sending any $(a,b) \in X$ to $a$ and $b$, respectively. These maps make this [[commuting diagram|square commute]]: \begin{displaymath} \itexarray{ &&&& X \\& && {}^{p_A}\swarrow && \searrow^{p_B} \\ && A &&&& B \\ & && {}_f\searrow & & \swarrow_{g} && \\ &&&& C &&&& } \end{displaymath} In fact, the pullback is the [[universal property|universal]] solution to finding a commutative square like this. In other words, given \emph{any} [[commutative diagram|commutative square]] \begin{displaymath} \itexarray{ &&&& Y \\& && {}^{q_A}\swarrow && \searrow^{q_B} \\ && A &&&& B \\ & && {}_f\searrow & & \swarrow_{g} && \\ &&&& C &&&& } \end{displaymath} there is a unique function $h: Y \to X$ such that \begin{displaymath} p_A h = q_A \end{displaymath} and \begin{displaymath} p_B h = q_B\,. \end{displaymath} Since this universal property expresses the concept of pullback purely arrow-theoretically, we can formulate it in any category. It is, in fact, a simple special case of a [[limit]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{in_category_theory}{}\subsubsection*{{In category theory}}\label{in_category_theory} A \textbf{pullback} is a [[limit]] of a [[diagram]] like this: \begin{displaymath} \itexarray{ && a &&&& b \\ & && {}_{f}\searrow & & \swarrow_g && \\ &&&& c &&&& } \end{displaymath} Such a diagram is also called a \textbf{pullback diagram} or a [[cospan]]. If the [[limit]] exists, we obtain a commutative square \begin{displaymath} \itexarray{ &&&& x \\& && {}^{p_a}\swarrow && \searrow^{p_b} \\ && a &&&& b \\ & && {}_f\searrow & & \swarrow_{g} && \\ &&&& c &&&& } \end{displaymath} and [[generalized the|the]] object $x$ is also called the \textbf{pullback}. It is well defined up to unique [[isomorphism]]. It has the universal property already described above in the special case of the category $Set$. The last commutative square above is called a \textbf{pullback square}. The concept of pullback is dual to the concept of [[pushout]]: that is, a pullback in $C$ is the same as a pushout in the [[opposite category]] $C^{op}$. \hypertarget{in_type_theory}{}\subsubsection*{{In type theory}}\label{in_type_theory} In [[type theory]] a [[pullback]] $P$ in \begin{displaymath} \itexarray{ P &\to& A \\ \downarrow && \downarrow^{\mathrlap{f}} \\ B &\stackrel{g}{\to}& C } \end{displaymath} is given by the [[dependent sum]] over the [[dependent type|dependent]] [[equality type]] \begin{displaymath} P = \sum_{a : A} \sum_{b : B} (f(a) = g(b)) \,. \end{displaymath} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{prop} \label{PullbacksAsEqualizers}\hypertarget{PullbacksAsEqualizers}{} \textbf{(pullbacks as equalizers)} If [[product]]s exist in $C$, then the pullback \begin{displaymath} \itexarray{ a \times_c b &\to& a \\ \downarrow && \downarrow^{\mathrlap{f}} \\ b &\stackrel{g}{\to}& c } \end{displaymath} is equivalently the [[equalizer]] \begin{displaymath} a \times_c b \to a \times b \stackrel{\overset{f p_1}{\longrightarrow}}{\underset{g p_2}{\longrightarrow}} c \end{displaymath} of the two morphisms induced by $f$ and $g$ out of the [[product]] of $a$ with $b$. \end{prop} \begin{prop} \label{PullbackPreservesMonomorphisms}\hypertarget{PullbackPreservesMonomorphisms}{} \textbf{(pullbacks preserve monomorphisms and isomorphisms)} Pullbacks preserve [[monomorphisms]] and [[isomorphisms]]: If \begin{displaymath} \itexarray{ a &\overset{}{\longrightarrow}& b \\ {}^{\mathllap{f^\ast g}}\downarrow & & \downarrow^{g} \\ c &\underset{f}{\longrightarrow}& d } \end{displaymath} is a pullback square in some category then: \begin{enumerate}% \item if $g$ is a [[monomorphism]] then $f^\ast g$ is a monomorphism; \item if $g$ is an [[isomorphism]] then $f^\ast g$ is an isomorphism. \end{enumerate} On the other hand that $f^\ast g$ is a monomorphism does not imply that $g$ is a monomorphism. \end{prop} \begin{prop} \label{}\hypertarget{}{} \textbf{([[pasting law for pullbacks]])} In any category consider a diagram of the form \begin{displaymath} \itexarray{ a &\to& b &\to& c \\ \downarrow && \downarrow && \downarrow \\ d &\to& e &\to& f } \end{displaymath} There are three commuting squares: the two inner ones and the outer one. Suppose the right-hand inner square is a pullback, then: The square on the left is a pullback if and only if the outer square is. \end{prop} \begin{proof} Pasting a morphism $x \to a$ with the outer square gives rise to a commuting square over the (composite) bottom and right edges of the diagram. The square over the cospan in the left-hand inner square arising from $x \to a$ includes a morphism into $b$, which if $b$ is a pullback induces the same commuting square over $d \to e \to f$ and $c \to d$. So one square is universal iff the other is. \end{proof} \begin{prop} \label{}\hypertarget{}{} The converse implication does not hold: it may happen that the outer and the left square are pullbacks, but not the right square. \end{prop} \begin{proof} For instance let $i : a \to b$ be a [[split monomorphism]] with [[retract]] $p : b \to a$ and consider \begin{displaymath} \itexarray{ a & \stackrel{=}{\to} & a & \stackrel{=}{\to} & a \\ \downarrow^{\mathrlap{=}} && \downarrow^{\mathrlap{i}} && \downarrow^{\mathrlap{=}} \\ a &\stackrel{i}{\to}& b &\stackrel{p}{\to}& a } \end{displaymath} Then the left square and the outer rectangle are pullbacks but the right square cannot be a pullback unless $i$ was already an [[isomorphism]]. \end{proof} \begin{remark} \label{}\hypertarget{}{} On the other hand, in the [[(∞,1)-category]] of [[∞-groupoids]], there is a sort of ``partial converse''; see [[homotopy pullback\#HomotopyFiberCharacterization]]. \end{remark} \hypertarget{saturation}{}\subsubsection*{{Saturation}}\label{saturation} The [[saturated class of limits|saturation]] of the class of pullbacks is the class of limits over categories $C$ whose groupoid reflection $\Pi_1(C)$ is trivial and such that $C$ is [[L-finite category|L-finite]]. \hypertarget{PullbackFunctor}{}\subsubsection*{{Pullback functor}}\label{PullbackFunctor} If $f : X \to Y$ is a [[morphism]] in a [[category]] $C$ with pullbacks, there is an induced pullback [[functor]] $f^* : C/Y \to C/X$, sometimes also called [[base change]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[fiber product]], [[base change]] \item [[wide pullback]] \item [[lax pullback]], [[comma object]] \item [[(∞,1)-pullback]], [[homotopy pullback]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Robert Paré]], \emph{Simply connected limits}. Can. J. Math., Vol. XLH, No. 4, 1990, pp. 731-746, \href{http://math.ca/10.4153/CJM-1990-038-6}{CMS} \end{itemize} [[!redirects pullbacks]] [[!redirects pullback square]] [[!redirects pullback diagram]] [[!redirects pullback squares]] [[!redirects pullback diagrams]] [[!redirects fiber product]] [[!redirects fiber products]] [[!redirects fibre product]] [[!redirects fibre products]] [[!redirects fibered product]] [[!redirects fibered products]] [[!redirects fibred product]] [[!redirects fibred products]] \end{document}