\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{pullback in a derivator} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{pullbacks_in_derivators}{}\section*{{Pullbacks in derivators}}\label{pullbacks_in_derivators} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{Pasting}{Pasting law}\dotfill \pageref*{Pasting} \linebreak \noindent\hyperlink{Detection}{Detection Lemma}\dotfill \pageref*{Detection} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{pullback in a derivator} is the generalization to the context of a [[derivator]] of the notion of [[pullback]] in ordinary category theory. Viewing a derivator as the ``shadow'' of an [[(∞,1)-category]], the notion of pullback therein coincides with the notion of [[homotopy pullback]] in an $(\infty,1)$-category. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $\square$ denote the category \begin{displaymath} \itexarray{a & \to & b \\ \downarrow & & \downarrow \\ c & \to & d} \end{displaymath} that is the ``free-living [[commutative square]]'', and let $L$ be the full subcategory of $\square$ on $b,c,d$, with inclusion $u\colon L\to \square$. Let $D$ be a [[derivator]] and let $X\in D(\square)$ be a commutative square in $D$. We say that $X$ is a \textbf{pullback square}, or is \textbf{cartesian}, if the unit $X\to u_* u^* X$ of the [[adjunction]] $u^*\dashv u_*$ is an isomorphism. Since $u$ is [[fully faithful]], so is $u_*$, so this is equivalent to saying that there exists some $Y\in D(L)$ such that $X\cong u_* Y$. If $D$ is merely a prederivator, then we can phrase the same definition by saying that $X$ has the [[free object|universal property]] that $u_* u^* X$ would, if the whole functor $u_*$ existed. The dual notion, of course, is a \textbf{pushout} or \textbf{cocartesian} square. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{Pasting}{}\subsubsection*{{Pasting law}}\label{Pasting} Using properties of [[homotopy exact squares]], we can prove the ``pasting law'' for pullback squares in a derivator: \begin{ulemma} Given a diagram \begin{displaymath} \itexarray{a & \to & b & \to & c \\ \downarrow & & \downarrow & & \downarrow \\ d & \to & e & \to & f } \end{displaymath} in which the right-hand square $bcef$ is a pullback, then the left-hand square $abde$ is a pullback if and only if the outer rectangle $acdf$ is a pullback. \end{ulemma} The following proof should be compared and contrasted with the \href{http://ncatlab.org/nlab/show/pullback#Pasting}{standard proof} for pullbacks in 1-categories, and the \href{http://ncatlab.org/nlab/show/%28infinity%2C1%29-pullback#QuasiCatPastingLaw}{quasi-categorical proof} for pullbacks in $(\infty,1)$-categories. In particular, note that the statement for derivators is a generalization of both, since both 1-categories and $(\infty,1)$-categories give rise to derivators. \begin{proof} First of all, by ``a diagram'' in a derivator, we mean an object of $D(X)$ for some suitable category $X$. In the above case, $X$ is the category consisting of two commutative squares, as pictured above. We'll write $abcdef$ for this $X$, and similarly $cdef$ for its lower-right L-shaped subcategory, and so on. We leave the verification of [[homotopy exact square|homotopy exactness]] of all squares to the reader. Firstly, since the squares \begin{displaymath} \itexarray{cef & \overset{}{\to} & bcef\\ \downarrow && \downarrow\\ cdef & \underset{}{\to} & abcdef} \qquad and \qquad \itexarray{cdf & \overset{}{\to} & acdf\\ \downarrow && \downarrow\\ cdef& \underset{}{\to} & abcdef} \end{displaymath} are exact, if we start from a $cdef$-diagram and right Kan extend it to a full $abcdef$-diagram, then the right-hand square and outer rectangle must be pullback squares. Moreover, by composition of adjoints, right Kan extension from $cdef$ to $abcdef$ is equivalent to first extending to $bcdef$ and then to $abcdef$, and since the square \begin{displaymath} \itexarray{bde & \overset{}{\to} & abde\\ \downarrow && \downarrow\\ bcdef & \underset{}{\to} & abcdef} \end{displaymath} is exact, the left-hand square in such an extension must also be a pullback. Now if we start with an $abcdef$-diagram, say $F$, we can restrict it to a $cdef$-diagram and then right Kan-extend it to a new $abcdef$-diagram. If $u\colon cdef \to abcdef$ is the inclusion, then this results in $u_\ast u^\ast F$, and we have a canonical natural transformation $\eta \colon F \to u_\ast u^\ast F$ (the unit of the adjunction $u^\ast \dashv u_\ast$). Since the square \begin{displaymath} \itexarray{cdef & \overset{}{\to} & cdef \\ \downarrow && \downarrow\\ cdef & \underset{}{\to} & abcdef} \end{displaymath} is exact, the counit $u^\ast u_\ast G \to G$ is an isomorphism for any $G$, and in particular for $G=u^\ast F$, from which it follows by the triangle identities that $u^\ast F \to u^\ast u_\ast u^\ast F$ is also an isomorphism --- i.e. the components of $\eta\colon F \to u_\ast u^\ast F$ at $c$, $d$, $e$, and $f$ are isomorphisms. Now if the right-hand square of $F$ is a pullback, then the restrictions of $F$ and $u_\ast u^\ast F$ to $bcef$ are both pullback squares; hence since the $cef$-components of $\eta$ are isomorphisms, so is the $b$-component. And if the left-hand square of $F$ is a pullback, then we can play the same game with $abde$ to show that the $a$-component of $\eta$ is an isomorphism, while if the outer rectangle is a pullback, we can play it with $acdf$. Hence in both of these cases, $\eta$ itself is an isomorphism, since all of its components are --- and thus the remaining square in $F$ is also a pullback, since we have shown that it is so in $u_\ast u^\ast F$. \end{proof} \hypertarget{Detection}{}\subsubsection*{{Detection Lemma}}\label{Detection} The following lemma, which detects when squares occurring in a Kan extension are pullbacks or pushouts, is due to \hyperlink{Franke}{Jens Franke}; see also \hyperlink{Groth}{Groth}. We state it in terms of pushouts. \begin{lemma} \label{CartesianSquareDetection}\hypertarget{CartesianSquareDetection}{} Let $f\colon K\to J$ be any functor and let $i\colon \square \to J$ be injective on objects, with lower vertex $i(1,1) = z$. Suppose that $z$ is not in the image of $f$, and that the induced functor $\Gamma \to (J \setminus z)/z$ is a nerve equivalence (such as if it has an adjoint). Then for any derivator $D$ and any $Y\in D(K)$, the square $i^* f_! Y$ is cocartesian. \end{lemma} \begin{proof} Since $f_! = j_! \bar{f}_!$ where $\bar{f}\colon K\to (J\setminus z)$ is induced by $f$ and $j\colon (J\setminus z) \to J$ is the inclusion, it suffices to suppose that $K = (J\setminus z)$. Now what we want is to prove that the following square is [[homotopy exact square|homotopy exact]]: \begin{displaymath} \itexarray{ \Gamma &\to & (J\setminus z) \\ \downarrow && \downarrow\\ \square &\to & J} \end{displaymath} Exactness is trivial at all objects of $\square$ except $(1,1)$. In that case, we paste with another square: \begin{displaymath} \itexarray{ \Gamma &\to& \Gamma &\to & (J\setminus z) \\ \downarrow & \swArrow & \downarrow && \downarrow\\ \ast &\underset{(1,1)}{\to} &\square &\to & J} \end{displaymath} The left-hand square is a [[comma square]], hence homotopy exact, so it suffices to show that the composite square is homotopy exact. But the comma object associated to the cospan $\ast \to J \leftarrow (J\setminus z)$ is $(J \setminus z)/z$, and of course this comma square is also exact. And the composite square factors through this comma square by the functor $\Gamma \to (J \setminus z)/z$ which is assumed a nerve equivalence; hence it is also homotopy exact. \end{proof} \hypertarget{references}{}\subsection*{{References}}\label{references} See all references at [[derivator]]. Referred to particularly above are: \begin{itemize}% \item Jens Franke, \emph{Uniqueness theorems for certain triangulated categories with an Adams spectral sequence}, \href{http://www.math.uiuc.edu/K-theory/0139/}{K-theory archive} \end{itemize} \begin{itemize}% \item Moritz Groth, \emph{Derivators, pointed derivators, and stable derivators} \href{http://www.math.uni-bonn.de/~mgroth/groth_derivators.pdf}{pdf} \end{itemize} [[!redirects pullbacks in a derivator]] [[!redirects pullbacks in derivators]] [[!redirects cartesian square in a derivator]] [[!redirects cartesian squares in a derivator]] [[!redirects cartesian squares in derivators]] [[!redirects Cartesian square in a derivator]] [[!redirects Cartesian squares in a derivator]] [[!redirects Cartesian squares in derivators]] [[!redirects fiber product in a derivator]] [[!redirects fiber products in a derivator]] [[!redirects fiber products in derivators]] [[!redirects pushout in a derivator]] [[!redirects pushouts in a derivator]] [[!redirects pushoutss in derivators]] [[!redirects cocartesian square in a derivator]] [[!redirects cocartesian squares in a derivator]] [[!redirects cocartesian squares in derivators]] [[!redirects coCartesian square in a derivator]] [[!redirects coCartesian squares in a derivator]] [[!redirects coCartesian squares in derivators]] \end{document}