\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{pure morphism} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{pure_morphisms}{}\section*{{Pure morphisms}}\label{pure_morphisms} \noindent\hyperlink{in_general_categorical_setup}{In general categorical setup}\dotfill \pageref*{in_general_categorical_setup} \linebreak \noindent\hyperlink{in_ring_theory_and_for_schemes}{In ring theory and for schemes}\dotfill \pageref*{in_ring_theory_and_for_schemes} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{in_general_categorical_setup}{}\subsection*{{In general categorical setup}}\label{in_general_categorical_setup} \begin{defn} \label{}\hypertarget{}{} Given a [[regular cardinal]] $\kappa$, a [[morphism]] $f: A\to B$ in a [[category]] $C$ is \textbf{$\kappa$-pure} (or \textbf{$\kappa$-universally injective}) if for every [[commutative square]] \begin{displaymath} \itexarray{ P & \stackrel{g}\to & Q\\ u\downarrow && \downarrow v \\ A &\stackrel{f}\to & B } \end{displaymath} in which $P$ and $Q$ are $\kappa$-[[presentable objects]], the morphism $u:P\to A$ factors through $g$, i.e. there is some $h: Q\to A$ with $u = h\circ g$. \end{defn} \begin{remark} \label{}\hypertarget{}{} Notice that the above definition does not require that also the morphism $v$ is factored, hence it does \emph{not} express a [[lifting property]]. \end{remark} \begin{prop} \label{}\hypertarget{}{} In a $\kappa$-[[accessible category]] $C$ every $\kappa$-pure morphism is [[monic]], hence exhibits a [[pure subobject]]. In a locally $\kappa$-[[locally presentable category|presentable category]] $\kappa$-pure morphisms are, moreover, [[regular monomorphisms]], and in fact coincide with the $\kappa$-[[directed colimits]] of [[split monomorphism]]s in the category of arrows $C^2 = Arr(C)$; more generally this characterization holds in all $\kappa$-accessible categories admiting [[pushouts]]. \end{prop} (\hyperlink{AHT96}{Adámek-Hub-Tholen 1996}). \hypertarget{in_ring_theory_and_for_schemes}{}\subsection*{{In ring theory and for schemes}}\label{in_ring_theory_and_for_schemes} We work with unital, possibly commutative, [[rings]] and [[modules]]. Given a ring $R$, a morphism $f: M\to M'$ of left $R$-modules is pure if the tensoring the [[exact sequence]] of left $R$-modules \begin{displaymath} 0\to Ker f \to M\stackrel{f}\to M'\to Coker f\to 0 \end{displaymath} with any right $R$-module $N$ (from the left) yields an exact sequence of abelian groups. Grothendieck has proved that faithfully flat morphisms of commutative schemes are of effective descent for the categories of quasicoherent $\mathcal{O}$-modules. But this was not entirely optimal, as there is in fact a more general class than faithfully flat morphisms which satisfy the effective descent. For a local case of commutative rings, [[Joyal]] and [[Tierney]] have then proved (unpublished) that the [[effective descent morphisms]] for modules are precisely the pure morphisms of rings (or dually of affine schemes). The result can be extracted also from their Memoirs volume on Galois theory. [[Janelidze]] and [[Tholen]] have reproved the theorem as a corollary of a result for noncommutative rings obtained using the Beck's [[comonadicity theorem]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[pure subobject]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item The \href{https://stacks.math.columbia.edu}{Stacks Project}, 34.4. Descent for universally injective morphisms, \href{https://stacks.math.columbia.edu/tag/08WE}{tag/08WE}, 28.10. Radicial and universally injective morphisms (of schemes) \href{https://stacks.math.columbia.edu/tag/01S2}{tag/01S2} \item Bachuki Mesablishvili, \emph{Pure morphisms of commutative rings are effective descent morphisms for modules -- a new proof}, Theory and Appl. of Categories \textbf{7}, 2000, No. 3, 38-42, \href{http://www.tac.mta.ca/tac/volumes/7/n3/7-03abs.html}{tac} \item [[T. Brzeziński]], R. Wisbauer, \emph{Corings and comodules}, London Math. Soc. Lec. Note Series \textbf{309}, Cambridge Univ. Press 2003; \href{http://maths.swan.ac.uk/staff/tb/corinerr.pdf}{errata pdf} \item [[George Janelidze]], [[Walter Tholen]], \emph{Facets of descent III: monadic descent for rings and algebras}, Appl. Categ. Structures \textbf{12} (2004), no. 5-6, 461--477, \href{http://www.ams.org/mathscinet-getitem?mr=2107397}{MR2005i:13019}, \href{http://dx.doi.org/10.1023/B:APCS.0000049312.36783.0a}{doi} \item [[Jiří Adámek]], H. Hub, [[Walter Tholen]], \emph{On pure morphisms in accessible categories}, J. Pure Appl. Alg. \textbf{107}, 1 (1996), pp 1-8, \end{itemize} \begin{itemize}% \item Michel H\'e{}bert, \emph{Purity and injectivity in accessible categories}, \item W.W. Crawley-Boevey, \emph{Locally finitely presented additive categories}, Communications in Algebra \textbf{22}(5)(1994), 1641-1674. \item [[Mike Prest]], \emph{Purity, spectra and localisation}, Enc. Math. Appl. \textbf{121}, Camb. Univ. Press 2011, 798 pages; publishers book \href{http://www.cambridge.org/gb/knowledge/isbn/item2327409/?site_locale=en_GB}{page} \item Christian U. Jensen, Helmut Lenzing, \emph{Model theoretic algebra: with particular emphasis on fields, rings, modules}, Algebra, Logic and Applications \textbf{2}, Gordon and Breach 1989. \item Ivo Herzog, \emph{Pure-injective envelopes}, Journal of Algebra and Its Applications 2(4) (2003), 397-402 \href{http://lima.osu.edu/people/iherzog/env.pdf}{pdf} \item [[André Joyal]], [[Myles Tierney]], \emph{An extension of the Galois theory of Grothendieck}, Mem. Amer. Math. Soc. \textbf{309} (1984) volume 51, pages vii+71 \end{itemize} The following paper was the first with the result on that pure morhisms are of the effective descent but the proof has been omitted: \begin{itemize}% \item Jean-Pierre Olivier, \emph{Descente par morphismes purs}, C. R. Acad. Sci. Paris Sér. A-B \textbf{271} (1970) A821–A823 \end{itemize} [[!redirects pure morphisms]] [[!redirects purity]] [[!redirects universally injective morphism]] \end{document}