\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{pure motive} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{motivic_cohomology}{}\paragraph*{{Motivic cohomology}}\label{motivic_cohomology} [[!include motivic cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{construction}{Construction}\dotfill \pageref*{construction} \linebreak \noindent\hyperlink{category_of_correspondences}{Category of correspondences}\dotfill \pageref*{category_of_correspondences} \linebreak \noindent\hyperlink{category_of_effective_pure_motives}{Category of effective pure motives}\dotfill \pageref*{category_of_effective_pure_motives} \linebreak \noindent\hyperlink{category_of_pure_motives}{Category of pure motives}\dotfill \pageref*{category_of_pure_motives} \linebreak \noindent\hyperlink{category_of_pure_chow_motives}{Category of pure Chow motives}\dotfill \pageref*{category_of_pure_chow_motives} \linebreak \noindent\hyperlink{category_of_pure_numerical_motives}{Category of pure numerical motives}\dotfill \pageref*{category_of_pure_numerical_motives} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} [[Grothendieck]] conjectured that every [[Weil cohomology theory]] factors uniquely through some [[category]], which he called the category of \emph{[[motives]]}. For [[smooth variety|smooth]] [[projective varieties]] (over some [[field]] $k$) such a category was given by Grothendieck himself, called the category of \emph{pure [[Chow motives]]}. For general smooth varieties the category is still conjectural, see at \emph{[[mixed motives]]}. \hypertarget{construction}{}\subsection*{{Construction}}\label{construction} Fix some [[adequate equivalence relation]] $\sim$ (e.g. [[rational equivalence]]). Let $Z^i(X)$ denote the group of $i$-codimensional [[algebraic cycles]] and let $A^i_\sim(X)$ denote the quotient $Z^i(X)/\sim$. \hypertarget{category_of_correspondences}{}\subsubsection*{{Category of correspondences}}\label{category_of_correspondences} Let $Corr_\sim(k)$, the category of [[correspondences]], be the [[category]] whose [[objects]] are [[smooth variety|smooth]] [[projective varieties]] and whose [[hom-sets]] are the [[direct sum]] \begin{displaymath} Corr_\sim(h(X),h(Y)) = \bigoplus_i A^{n_i}_\sim(X_i \times Y) \,, \end{displaymath} where $(X_i)$ are the [[irreducible components]] of $X$ and $n_i$ are their respective [[dimensions]]. The [[composition]] of two [[morphisms]] $\alpha \in Corr(X,Y)$ and $\beta \in Corr(Y,Z)$ is given by \begin{displaymath} p_{XZ,*} (p_{XY}^*(\alpha) . p_{YZ}^*(\beta)) \end{displaymath} where $p_{XY}$ denotes the projection $X \times Y \times Z \to X \times Y$ and so on, and $.$ denotes the [[intersection product]] in $X \times Y \times Z$. There is a canonical [[contravariant functor]] \begin{displaymath} h \colon SmProj(k) \to Corr_\sim(k) \end{displaymath} from the category of smooth projective varieties over $k$ given by mapping $X \mapsto X$ and a morphism $f : X \to Y$ to its [[graph of a function|graph]], the [[image]] of its [[graph morphism]] $\Gamma_f : X \to X \times Y$. The category of correspondences is [[symmetric monoidal category|symmetric monoidal]] with $h(X) \otimes h(Y) \coloneqq h(X \times Y)$. We also define a category $Corr_\sim(k, A)$ of correspondences with [[coefficients]] in some [[commutative ring]] $A$, by [[tensor product|tensoring]] the morphisms with $A$; this is an $A$-[[linear category]] [[additive category|additive]] [[symmetric monoidal category|symmetric monoidal]] category. \hypertarget{category_of_effective_pure_motives}{}\subsubsection*{{Category of effective pure motives}}\label{category_of_effective_pure_motives} The [[Karoubi envelope]] (pseudo-abelianisation) of $Corr_\sim(k, A)$ is called the category of \textbf{effective pure motives} (with coefficients in $A$ and with respect to the equivalence relation $\sim$), denoted $Mot^eff_\sim(k, A)$. Explicitly its objects are pairs $(h(X), p)$ with $X$ a smooth projective variety and $p \in Corr(h(X), h(X))$ an [[idempotent]], and morphisms from $(h(X), p)$ to $(h(Y), q)$ are morphisms $h(X) \to h(Y)$ in $Corr_\sim$ of the form $q \circ \alpha \circ p$ with $\alpha \in Corr_{\sim}(h(X), h(Y))$. This is still a [[symmetric monoidal category|symmetric monoidal]] category with $(h(X), p) \otimes (h(Y), q) = (h(X \times Y), p \times q)$. Further it is [[Karoubian category|Karoubian]], $A$-[[linear category|linear]] and [[additive category|additive]]. The image of $X \in SmProj(k)$ under the above functor \begin{displaymath} h \colon SmProj(k) \to Corr_\sim(k,A) \to Mot^{eff}_\sim(k,A) \end{displaymath} is the \textbf{the motive of $X$}. \hypertarget{category_of_pure_motives}{}\subsubsection*{{Category of pure motives}}\label{category_of_pure_motives} There exists a motive $\mathbf{L}$, called the \textbf{[[Lefschetz motive]]}, such that the motive of the [[projective line]] decomposes as \begin{displaymath} h(\mathbf{P}^1_k) = h(\Spec(k)) \oplus \mathbf{L} \end{displaymath} To get a [[rigid category]] we formally invert the Lefschetz motive and get a category \begin{displaymath} Mot_\sim(k, A) \coloneqq Mot^{eff}_\sim(k,A)[\mathbf{L}^{-1}] \,, \end{displaymath} the \textbf{category of pure motives} (with coefficients in $A$ and with respect to $\sim$). This is a [[rigid category|rigid]], [[Karoubian category|Karoubian]], [[symmetric monoidal category]]. Its objects are triples $(h(X), p, n)$ with $n \in \mathbf{Z}$. \hypertarget{category_of_pure_chow_motives}{}\subsubsection*{{Category of pure Chow motives}}\label{category_of_pure_chow_motives} When the relation $\sim$ is [[rational equivalence]] then $A^*_\sim$ are the [[Chow groups]], and $Mot_\sim(k) = Mot_{rat}(k)$ is called the category of \textbf{pure [[Chow motives]]}. \hypertarget{category_of_pure_numerical_motives}{}\subsubsection*{{Category of pure numerical motives}}\label{category_of_pure_numerical_motives} When the relation $\sim$ is numerical equivalence, then one obtains \emph{[[numerical motives]]}. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[sheaf with transfer]] \item [[motive]] \item [[mixed motive]] \item [[Voevodsky motive]] \item [[noncommutative motive]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Yuri Manin]], \emph{Correspondences, motifs and monoidal transformations} , Math. USSR Sb. 6 439, 1968(\href{http://resources.agssp2012.torsor.org/documents/manin.pdf}{pdf}, \href{http://iopscience.iop.org/0025-5734/6/4/A01}{web}) \item [[Tony Scholl]], \emph{Classical motives}, in Motives, Seattle 1991. Proc Symp. Pure Math 55 (1994), part 1, 163-187 (\href{https://www.dpmms.cam.ac.uk/~ajs1005/preprints/classical_motives.pdf}{pdf}) \item [[James Milne]], \emph{Motives -- Grothendieck's Dream} (\href{http://www.jmilne.org/math/xnotes/MOT.pdf}{pdf}) \item [[Minhyong Kim]], \emph{Classical Motives: Motivic $L$-functions} (\href{http://www.ucl.ac.uk/~ucahmki/ihes3.pdf}{pdf}) \item [[Bruno Kahn]], \href{http://www.aimath.org/WWN/motivesdessins/PaloAlto1.pdf}{pdf slides} on pure motives \item R. Sujatha, \emph{Motives from a categorical point of view}, Lecture notes (2008) (\href{http://www.math.tifr.res.in/~sujatha/ihes.pdf}{pdf}) \end{itemize} Section 8.2 of \begin{itemize}% \item [[Alain Connes]], [[Matilde Marcolli]], \emph{[[Noncommutative Geometry, Quantum Fields and Motives]]} (\href{http://www.alainconnes.org/docs/bookwebfinal.pdf}{pdf}) \end{itemize} category: algebraic geometry [[!redirects pure motives]] [[!redirects category of pure motives]] \end{document}