\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{pure type system} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{type_theory}{}\paragraph*{{Type theory}}\label{type_theory} [[!include type theory - contents]] \hypertarget{deduction_and_induction}{}\paragraph*{{Deduction and Induction}}\label{deduction_and_induction} [[!include deduction and induction - contents]] \hypertarget{foundations}{}\paragraph*{{Foundations}}\label{foundations} [[!include foundations - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{strongly_normalizing_systems}{Strongly normalizing systems}\dotfill \pageref*{strongly_normalizing_systems} \linebreak \noindent\hyperlink{intuitionistic_higherorder_logic}{Intuitionistic (higher-order) logic}\dotfill \pageref*{intuitionistic_higherorder_logic} \linebreak \noindent\hyperlink{lambda_cube}{Lambda cube}\dotfill \pageref*{lambda_cube} \linebreak \noindent\hyperlink{CalculusOfConstructions}{Calculus of constructions}\dotfill \pageref*{CalculusOfConstructions} \linebreak \noindent\hyperlink{inconsistent_systems}{Inconsistent systems}\dotfill \pageref*{inconsistent_systems} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A pure type system is an explicitly typed [[lambda calculus]] using [[dependent product]] as the type of lambda expressions: the basic idea is that \begin{displaymath} \Gamma, x:A \vdash b:B \end{displaymath} implies \begin{displaymath} \Gamma \vdash (\lambda x:A . b) : (\prod x:A . B). \end{displaymath} In other words a \emph{pure type system} is \begin{enumerate}% \item a system of [[natural deduction]]; \item for [[dependent types]]; \item and with (only) the [[dependent product type]] [[type formation|formation]] rule specified. \end{enumerate} \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A \emph{pure type system} is defined by \begin{itemize}% \item a set $S$ of \emph{sorts}, all of which are constants, \item a set $A$ of \emph{axioms} of the form $c : s$ with $c$ a constant and $s$ a sort, \item a set $R \hookrightarrow S \times S \times S$ of \emph{rules}: triples $(s_{1}, s_{2}, s_{3})$ of sorts. Rules $(s_{1}, s_{2}, s_{2})$ are abbreviated as $(s_{1}, s_{2})$. \end{itemize} \begin{remark} \label{}\hypertarget{}{} These \emph{rules} will appear in the [[type formation]] rule for [[dependent product types]] below. They will say that for a type of sort $s_2$ [[dependent type|depending]] on a type of sort $s_1$ its dependent product is a type of sort $s_3$. \end{remark} \begin{remark} \label{}\hypertarget{}{} In fact all rules $(s_{1}, s_{2}, s_{2})$ appearing in the following have $s_2 = s_3$. So we can just as well regard $R$ as a binary relation $R \hookrightarrow S\times S$ (rather than a ternary one). \end{remark} From the above input data we derive the following \begin{enumerate}% \item The \textbf{terms} of a pure type system are the following (recursive definition): \begin{itemize}% \item variables and constants \item $(\lambda x : A . B)$ (abstraction) \item $(\prod x : A . B)$ (product) \item $A B$ (application) \end{itemize} Here $x$ is a variable and $A$, $B$ are terms. The operators $\lambda$ and $\prod$ bind the variable $x$. \item The \textbf{typing of terms} is inductively defined by the following rules. A typing is of the form \begin{displaymath} x_{1} : A_{1}, \dots, x_{n} : A_{n} \vdash A : B \end{displaymath} meaning that the types of the variables declared on the left induces the term $A$ has type $B$. Note that types are also terms. The order of variable declarations is significant: the declaration $x_{i} : A_{i}$ may depend on declarations to its left. \end{enumerate} The [[natural deduction]] rules are defined to be the following, for all $s \in S$ and where $x$ ranges over the set of variables. \begin{tabular}{l|l|l} name&rule&condition\\ \hline (axioms)&$\vdash c : s$&if $(c : s)$ is an axiom;\\ (start)&$\frac{\Gamma \vdash A:s}{\Gamma, x : A \vdash x : A}$&if $x \notin \Gamma$\\ (weakening)&$\frac{\Gamma \vdash A:B; \quad \Gamma \vdash C:s}{\Gamma, x : C \vdash A : B}$&if $x \notin \Gamma$\\ (product)&$\frac{\Gamma \vdash A : s_{1}; \quad \Gamma, x:A \vdash B : s_{2}}{\Gamma \vdash (\prod x:A . B) : s_{3}}$&if $(s_{1}, s_{2}, s_{3}) \in R$;\\ (application)&$\frac{\Gamma \vdash F : (\prod x:A . B); \quad \Gamma \vdash a : A}{\Gamma \vdash Fa : B [x := a]}$&\\ (abstraction)&$\frac{\Gamma, x:A \vdash b : B; \quad \Gamma \vdash (\prod x:A . B) : s}{\Gamma \vdash (\lambda x:A.b) : (\prod x:A.B)}$&\\ (conversion)&$\frac{\Gamma \vdash A : B; \quad \Gamma \vdash B' : s; \quad B =_{\beta} B'}{\Gamma \vdash A : B'}$&\\ \end{tabular} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{strongly_normalizing_systems}{}\subsubsection*{{Strongly normalizing systems}}\label{strongly_normalizing_systems} \hypertarget{intuitionistic_higherorder_logic}{}\paragraph*{{Intuitionistic (higher-order) logic}}\label{intuitionistic_higherorder_logic} \hypertarget{lambda_cube}{}\paragraph*{{Lambda cube}}\label{lambda_cube} The \emph{lambda cube} (\hyperlink{Barendregt91}{Barendregt 91}) consists of eight systems arranged in a cube. The most expressive is given by the following choice of sorts, axioms and rules: \begin{tabular}{l|l} symbol&actual value\\ \hline $S =$&$\{\ast, \square\}$\\ $A =$&$\{(\ast : \square)\}$\\ $R =$&$\{(\ast, \ast), (\ast, \square), (\square, \ast), (\square, \square)\}$\\ \end{tabular} (Here $\{\ast, \Box\}$ denotes the 2-element set, see \hyperlink{Barendregt91}{Barendregt 91, 2.1}) The other systems omit some of the last three rules. Some specific systems are the following: \begin{tabular}{l|l|l|l|l} name&$(\ast, \ast)$&$(\ast, \square)$&$(\square, \ast)$&$(\square, \square)$\\ \hline $\lambda\rightarrow$ [[simply typed lambda calculus]]&yes&&&\\ ${\lambda}P$ [[logical framework]]&yes&yes&&\\ $\lambda2$ [[system F]]&yes&&yes&\\ $\lambda\underline{\omega}$&yes&&&yes\\ ${\lambda}C$ [[calculus of constructions]]&yes&yes&yes&yes\\ \end{tabular} \hypertarget{CalculusOfConstructions}{}\paragraph*{{Calculus of constructions}}\label{CalculusOfConstructions} For instance for the [[calculus of constructions]] we have \begin{itemize}% \item $* =$ [[Prop]], the \emph{[[type of propositions]]} \item $\Box =$ [[Type]], the \emph{[[type of types]]}. \end{itemize} The single axiom $* \colon \Box$ hence says that $Prop \colon Type$, hence that [[Prop]] is a [[type]]. The rules express the usual rule for [[dependent product type]]: \begin{itemize}% \item a dependent product over a generic [[dependent type]] is itself some type; \item but the dependent product of a dependent [[proposition]] is itself a proposition, namely the [[universal quantifier|universal quantification]]. \end{itemize} \hypertarget{inconsistent_systems}{}\subsubsection*{{Inconsistent systems}}\label{inconsistent_systems} The most permissive pure type system: \begin{tabular}{l|l} symbol&actual value\\ \hline $S =$&$\{\ast\}$\\ $A =$&$\{(\ast : \ast)\}$\\ $R =$&$\{(\ast, \ast)\}$\\ \end{tabular} But there is an example with even non-circular system of axioms (System $\mathsf{U}^-$): \begin{tabular}{l|l} symbol&actual value\\ \hline $S =$&$\{ \ast, \square, \triangle\}$\\ $A =$&$\{(\ast : \square), (\square : \triangle)\}$\\ $R =$&$\{(\ast, \ast), (\square, \ast), (\square, \square), (\triangle, \square)\}$\\ \end{tabular} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item Pure type systems can be augmented with a \emph{cumulativity} relation between sorts, so that if $s_1 \preceq s_2$, then any type in $s_1$ is also in $s_2$; see \hyperlink{BG05}{Barras-Gregoire}. \item The \emph{[[calculus of inductive constructions]]} can be formulated as a particular pure type system (with a hierarchy of [[type of types]]) augmented by rules for introducing [[inductive types]]. \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item Henk Barendregt, \emph{Introduction to generalized type systems}, J. Funct. Program. 1(2), 1991 (\href{http://patryshev.com/books/barendregt.pdf}{pdf}) \item Henk Barendregt (Catholic University Nijmegen), \emph{[[Lambda calculi with types]]}, To appear in [[Samson Abramsky]], D.M. Gabbay and T.S.E. Maibaum (eds.) \emph{Handbook of Logic in Computer Science}, Volume II, Oxford University Press. (\href{http://ttic.uchicago.edu/~dreyer/course/papers/barendregt.pdf}{preprint pdf}) \end{itemize} Survey includes \begin{itemize}% \item Frade, \emph{Calculus of inductive constructions} (\href{http://www4.di.uminho.pt/~mjf/pub/SFV-CIC-2up.pdf}{pdf}) \item [[Cody Roux]], \emph{Pure type systems: Dependents when you need them}, talk at Boston Haskell Meetup 2015 (\href{http://de.slideshare.net/imalsogreg/cody-roux-pure-type-systems-boston-haskell-meetup}{slides},\href{https://www.youtube.com/watch?v=ZGqKsalJi4s}{video}) \end{itemize} A generalization to cumulativity can be found in \begin{itemize}% \item Bruno Barras and Benjamin Gregoire, \emph{On the role of type decorations in the Calculus of Inductive Constructions}, Lecture Notes in Computer Science Volume 3634, 2005, pp 151-166, \href{http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.61.2666&rep=rep1&type=pdf}{PDF} \end{itemize} [[!redirects pure type systems]] \end{document}