\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{pushout} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{infinitylimits}{}\paragraph*{{Infinity-limits}}\label{infinitylimits} [[!include infinity-limits - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{pushouts_in_}{Pushouts in $Set$}\dotfill \pageref*{pushouts_in_} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{in_any_category}{In any category}\dotfill \pageref*{in_any_category} \linebreak \noindent\hyperlink{in_a_quasitopos}{In a quasitopos}\dotfill \pageref*{in_a_quasitopos} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_entries}{Related entries}\dotfill \pageref*{related_entries} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \textbf{pushout} is an ubiquitous construction in [[category theory]] providing a [[colimit]] for the diagram $\bullet\leftarrow\bullet\rightarrow\bullet$. It is dual to the notion of a [[pullback]]. \hypertarget{pushouts_in_}{}\subsection*{{Pushouts in $Set$}}\label{pushouts_in_} In the category [[Set]] a `pushout' is a quotient of the disjoint union of two sets. Given a diagram of sets and functions like this: \begin{displaymath} \itexarray{ &&&& C &&&& \\ & && f \swarrow & & \searrow g && \\ && A &&&& B } \end{displaymath} the `pushout' of this diagram is the set $X$ obtained by taking the disjoint union $A + B$ and identifying $a \in A$ with $b \in B$ if there exists $x \in C$ such that $f(x) = a$ and $g(x) = b$ (and all identifications that follow to keep [[equality]] an [[equivalence relation]]). This construction comes up, for example, when $C$ is the intersection of the sets $A$ and $B$, and $f$ and $g$ are the obvious inclusions. Then the pushout is just the union of $A$ and $B$. Note that there are maps $i_A : A \to X$, $i_B : B \to X$ such that $i_A(a) = [a]$ and $i_B(b) = [b]$ respectively. These maps make this square commute: \begin{displaymath} \itexarray{ &&&& C &&&& \\ & && f \swarrow & & \searrow g && \\ && A &&&& B \\ & && {}_{i_A}\searrow & & \swarrow_{i_B} && \\ &&&& X &&&& } \end{displaymath} In fact, the pushout is the [[universal property|universal]] solution to finding a [[commutative square]] like this. In other words, given \emph{any} commutative square \begin{displaymath} \itexarray{ &&&& C &&&& \\ & && f \swarrow & & \searrow g && \\ && A &&&& B \\ & && {}_{j_A}\searrow & & \swarrow_{j_B} && \\ &&&& Y &&&& } \end{displaymath} there is a unique function $h: X \to Y$ such that \begin{displaymath} h i_A = j_A \end{displaymath} and \begin{displaymath} h i_B = j_B . \end{displaymath} Since this universal property expresses the concept of pushout purely arrow-theoretically, we can formulate it in any category. It is, in fact, a simple special case of a [[colimit]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A \textbf{pushout} is a [[colimit]] of a [[diagram]] like this: \begin{displaymath} \itexarray{ &&&& c &&&& \\ & && f \swarrow & & \searrow g && \\ && a &&&& b } \end{displaymath} Such a diagram is called a [[span]]. If the colimit exists, we obtain a [[commutative square]] \begin{displaymath} \itexarray{ &&&& c &&&& \\ & && f \swarrow & & \searrow g && \\ && a &&&& b \\ & && {}_{i_a}\searrow & & \swarrow_{i_b} && \\ &&&& x &&&& } \end{displaymath} and the object $x$ is also called the \textbf{pushout}. It has the universal property already described above in the special case of the category $Set$. Other terms: $x$ is a \textbf{cofibred coproduct} of $a$ and $b$, or (especially in [[algebraic categories]] when $f$ and $g$ are [[monomorphisms]]) a free product of $a$ and $b$ with $c$ \textbf{amalgamated}, or more simply an \textbf{amalgamation} (or \textbf{amalgam}) of $a$ and $b$. The concept of pushout is a special case of the notion of \textbf{[[cofiber coproduct|wide pushout]]} (compare [[wide pullback]]), where one takes the colimit of a diagram which consists of a set of arrows $\{f_i: c \to a_i\}_{i \in I}$. Thus an ordinary pushout is the case where $I$ has cardinality $2$. Note that the concept of pushout is dual to the concept of [[pullback]]: that is, a pushout in $C$ is the same as a pullback in $C^{op}$. See [[pullback]] for more details. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{in_any_category}{}\subsubsection*{{In any category}}\label{in_any_category} \begin{prop} \label{PushoutsAsCoequalizers}\hypertarget{PushoutsAsCoequalizers}{} \textbf{(pushouts as coequalizers)} If [[coproduct]]s exist in some category, then the pushout \begin{displaymath} \itexarray{ a &\stackrel{f}{\to} & b \\ ^{\mathrlap{g}}\downarrow && \downarrow \\ c & {\to}& b +_a c } \end{displaymath} is equivalently the [[coequalizer]] \begin{displaymath} a \stackrel{\overset{i_1 f}{\longrightarrow}}{\underset{i_2 g}{\longrightarrow}} b + c \to b +_a c \end{displaymath} of the two morphisms induced by $f$ and $g$ into the [[coproduct]] of $b$ with $c$. \end{prop} \begin{prop} \label{PushoutPreservesEpimorphisms}\hypertarget{PushoutPreservesEpimorphisms}{} \textbf{(pushouts preserves epimorphisms and isomorphisms)} Pushouts preserve [[epimorphisms]] and [[isomorphisms]]: If \begin{displaymath} \itexarray{ a &\overset{f}{\longrightarrow}& b \\ {}^{\mathllap{g}}\downarrow & & \downarrow^{f_\ast g} \\ c &\underset{}{\longrightarrow}& d } \end{displaymath} is a pushout square in some category then: \begin{enumerate}% \item if $g$ is a [[epimorphism]] then $f_\ast g$ is an epimorphism; \item if $g$ is an [[isomorphism]] then $f_\ast g$ is an isomorphism. \end{enumerate} \end{prop} \begin{prop} \label{}\hypertarget{}{} \textbf{([[pasting law for pushouts]])} Consider a [[commuting diagram]] of the following shape in any category: \begin{displaymath} \itexarray{ x & \longrightarrow & y & \longrightarrow & z \\ \downarrow && \downarrow && \downarrow \\ u & \longrightarrow & v & \longrightarrow & w } \end{displaymath} If the left square is a [[pushout]], then the total rectangle is a pushout if and only if the right square is a pushout. \end{prop} \begin{proof} See the proof of the dual property for [[pullbacks]]. \end{proof} \begin{prop} \label{}\hypertarget{}{} The converse implication does not hold: it may happen that the outer and the right square are pushouts, but not the left square. \end{prop} \begin{proof} See the proof of the dual proposition for [[pullbacks]]. \end{proof} \hypertarget{in_a_quasitopos}{}\subsubsection*{{In a quasitopos}}\label{in_a_quasitopos} \begin{prop} \label{PushoutOfStrongMonomorphismInQuasitopos}\hypertarget{PushoutOfStrongMonomorphismInQuasitopos}{} \textbf{pushout of [[strong monomorphism]] in [[quasitopos]]} Suppose that $(\mathrm{T},\mathcal{C})$ is either \begin{itemize}% \item ([[monomorphism]],[[topos]]), or \item ([[strong monomorphism]],[[quasitopos]]) \end{itemize} Suppose that \begin{displaymath} \itexarray{ O_{0,1} & \to & O_{1,1} \\ m \downarrow &&\downarrow h \\ O_{0,0} & \to & O_{1,0} } \end{displaymath} is a [[commutative diagram]] in $\mathcal{C}$ such that \begin{itemize}% \item $m$ is $\mathrm{T}$ in $\mathcal{C}$ \item the diagram is a pushout in $\mathcal{C}$ \end{itemize} Then \begin{itemize}% \item $h$ is $\mathrm{T}$ in $\mathcal{C}$ \item the diagram is a pullback in $\mathcal{C}$ \end{itemize} \end{prop} See at \emph{[[quasitopos]]} \href{quasitopos#PushoutOfStrongMonos}{this lemma}. Note that the result for quasitoposes immediately implies the result for toposes, since all monomorphisms $i: A \to B$ in a topos are [[regular monomorphism|regular]] ($i$ being the equalizer of the arrows $\chi_i, t \circ !: B \to \Omega$ in \begin{displaymath} \itexarray{ & & 1 \\ & \mathllap{!} \nearrow & \downarrow \mathrlap{t} \\ B & \underset{\chi_i}{\to} & \Omega } \end{displaymath} where $\chi_i$ is the classifying map of $i$) and therefore strong. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \ldots{} \hypertarget{related_entries}{}\subsection*{{Related entries}}\label{related_entries} \begin{itemize}% \item [[amalgamation property]] \item [[wide pushout]] \item [[coequalizer]] \item [[colimit]] \item [[pullback]] \end{itemize} [[!redirects pushout]] [[!redirects pushouts]] [[!redirects cofibred coproduct]] [[!redirects cofibred coproducts]] [[!redirects cofibered coproduct]] [[!redirects cofibered coproducts]] [[!redirects cofiber coproduct]] [[!redirects cofiber coproducts]] [[!redirects amalgamated free product]] [[!redirects amalgamated free products]] [[!redirects amalgamated coproduct]] [[!redirects amalgamated coproducts]] [[!redirects amalgamation]] [[!redirects amalgamations]] [[!redirects amalgam]] [[!redirects amalgams]] \end{document}