\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{quadratic formula} \hypertarget{the_quadratic_formula}{}\section*{{The quadratic formula}}\label{the_quadratic_formula} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{discussion}{Discussion}\dotfill \pageref*{discussion} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Consider the equation \begin{equation} a{x}^2 + b{x} + c = 0 , \label{eqn}\end{equation} which we wish to solve for $x$. In certain contexts, the solutions are given by one or more versions of the quadratic formula. \hypertarget{discussion}{}\subsection*{{Discussion}}\label{discussion} The coefficients $a, b, c$ are commonly taken from an [[algebraically closed field]] $K$ of [[characteristic]] $0$, such as the field $\mathbb{C}$ of [[complex numbers]], although any quadratically closed field whose characteristic is not $2$ would work just as well. Alternatively, the coefficients can be taken from a [[real closed field]] $K$, such as the field $\mathbb{R}$ of [[real numbers]]; then the solutions belong to $K[\mathrm{i}]$. (Of course, $\mathbb{R}[\mathrm{i}]$ is simply $\mathbb{C}$ again.) More generally, starting from any [[integral domain]] $K$ whose characteristic is not $2$, the solutions belong to some [[splitting field]] of $K$. (Of course, there are solutions in \emph{some} splitting field, regardless of the characteristic, but they are not given by the quadratic formula if the characteristic is $2$.) Explicitly, the solutions of \eqref{eqn} may be given by the \textbf{usual quadratic formula} \begin{equation} x_\pm = \frac{-b \pm \sqrt{b^2 - 4a{c}}}{2a} , \label{usual}\end{equation} which works as long as $a \ne 0$. There is also an \textbf{alternate quadratic formula} \begin{equation} x_\pm = \frac{2c}{-b \mp \sqrt{b^2 - 4a{c}}} , \label{alt}\end{equation} which may be obtained from \eqref{usual} by rationalizing the numerator; this works as long as $c \ne 0$. (Note that $\pm$ and $\mp$ appear here simply to indicate the two [[square roots]] of the determinant $b^2 - 4a{c}$ and how they correspond to the two solutions $x_\pm$; we do not need to have a [[function]] $\sqrt{}$ which always chooses a `principal' square root.) These two formulas are reconciled in the [[projective line]] of $K$. As long as $(a, b, c) \ne (0, 0, 0)$, there are two solutions (which might happen to be equal) in the projective line. If $a = 0$, then one of these solutions is $\infty$, and \eqref{usual} correctly gives us that solution (as long as $b \ne 0$) for one choice of square root, although it gives $0/0$ for the other choice. Similarly, \eqref{alt} correctly gives us $x = 0$ when $c = 0$ and $b \ne 0$, but it does not give us the other root when $c = 0$. Note that if $a, c = 0$ but $b \ne 0$, then \eqref{usual} gives us one root ($\infty$) while \eqref{alt} gives us the other ($0$). So in general, we should be given $a \ne 0$, $b \ne 0$, or $c \ne 0$ for a nondegenerate equation \eqref{eqn}. If $a \ne 0$, then we use \eqref{usual}; if $c \ne 0$, then we use \eqref{alt}. Finally, if $b \ne 0$, then we use both; each root will be successfully given by at least one formula for some choice of square root of $b^2 - 4a{c}$. When the coefficients come from an [[ordered field]] $K$ (which we assume real closed), then we can write down a formula specially for the case when $b \ne 0$. This is the \textbf{numerical analysts' quadratic formula} \begin{equation} \begin {gathered} \displaystyle x_{\hat{b}} = \frac{2c}{-b - \hat{b}\sqrt{b^2 - 4a{c}}} ;\\ \displaystyle x_{-\hat{b}} = \frac{-b - \hat{b}\sqrt{b^2 - 4a{c}}}{2a} .\\ \end {gathered} \label{numanal}\end{equation} In this formula, $\hat{b}$ is the sign of $b$, that is $b/{|b|}$; also, we must choose a nonnegative principal square root, so that $\sqrt{b^2 - 4a{c}} \lt 0$ in $K$ is avoided (and thus the common denominator of $x_{\hat{b}}$ and numerator of $x_{-\hat{b}}$ is nonzero even if not imaginary). Despite the name, this formula is not sufficient for all purposes in [[numerical analysis]]; one still needs all three formulas and chooses between them based on whether $a \ne 0$, $b \ne 0$, or $c \ne 0$ is best established. There is also an interesting issue about whether $b^2 - 4a{c} \ne 0$. Everything above is valid in weak forms of [[constructive mathematics]], except for the statement that $\mathbb{C}$ is algebraically closed. That claim follows from [[weak countable choice]] ($WCC$), which in turn will follow from either [[excluded middle]] or [[countable choice]], which is accepted by most constructive mathematicians. Nevertheless, the statement \begin{displaymath} \forall\, a, b, c\colon \mathbb{C},\; \exists\, r\colon \mathbb{C},\; r^2 = b^2 - 4a{c} \end{displaymath} is false in (for example) the [[internal language]] of the [[sheaf topos]] over the [[real line]]. (Essentially, this is because there is no [[continuous map]] $\sqrt{}$ on any neighbourhood of $0$ in $\mathbb{C}$.) If we are given that $a, b, c$ are real, or if we are given that $b^2 \ne 4a{c}$, then there is no problem. But in general, we cannot define this square root, which appears in every version of the quadratic formula. However, there is a more subtle sense in which $\mathbb{C}$ is algebraically closed even without $WCC$; essentially, this allows us to approximate the [[subset]] of $\mathbb{C}$ whose elements are the two solutions of \eqref{eqn} (using two-element subsets of the field of, say, [[Gaussian numbers]]) even if we can't approximate any one solution (using individual, say, Gaussian numbers); see \hyperlink{Richman}{Richman (1998)} for details. The quadratic formula can then be interpreted as indicating this approximated subset. Sometimes one considers the equation \begin{displaymath} a{x}^2 + 2p{x} + c = 0 \end{displaymath} instead of \eqref{eqn}; then \eqref{usual} simplifies to \begin{equation} x_\pm = \frac{-p \pm \sqrt{p^2 - a{c}}}a \label{simpl}\end{equation} (and similarly for \eqref{alt} and \eqref{numanal}). This is valid even in characteristic $2$, but unfortunately then it is fairly useless, since $b = 2p = 0$. More precisely, if $b = 0$, then \eqref{simpl} with $p = 0$ gives the roots $\pm\sqrt{-c/a}$ in any characteristic, but in that case the equation was easy to solve without any formula. On the other hand, if $b \ne 0$ and $\char K = 2$, then no version of the quadratic formula is applicable, yet this gives no information as to whether the polynomial is [[solvable polynomial|solvable]] and what its roots are if it is. For example, the equation $x^2 + x = 0$ has roots $0$ and $1$ in $\F_2$ (or $0$ and $-1$ in any field, as may be found by factoring), while $x^2 + x + 1 = 0$ is not solvable over $\F_2$, yet both have $b^2 - 4a{c} = 1$ and give $0/0$ in both \eqref{usual} and \eqref{alt} (while \eqref{numanal} and \eqref{simpl} are directly inapplicable). \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Fred Richman]]; 1998; \emph{The fundamental theorem of algebra: a constructive development without choice}; \href{http://math.fau.edu/richman/html/docs.htm}{Fred Richman's Documents} \end{itemize} [[!redirects quadratic formula]] [[!redirects quadratic formulas]] [[!redirects quadratic formulae]] [[!redirects quadratic formulæ]] \end{document}