\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{quandle} \hypertarget{quandles}{}\section*{{Quandles}}\label{quandles} \noindent\hyperlink{the_idea}{The Idea}\dotfill \pageref*{the_idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_entries}{Related entries}\dotfill \pageref*{related_entries} \linebreak \noindent\hyperlink{links}{Links}\dotfill \pageref*{links} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{the_idea}{}\subsection*{{The Idea}}\label{the_idea} A quandle is a set equipped with a binary operation satisfying axioms analogous to the three [[Reidemeister moves]] in knot theory. A quandle is a special case of a [[rack]]. While mainly used to obtain invariants of [[knot|knots]], quandles are interesting algebraic structures in their own right. In particular, the definition of a quandle axiomatizes the properties of conjugation in a group. More abstractly, we can say that a quandle is an algebraic structure where every element acts as an automorphism of that structure, fixing that element. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A \textbf{quandle} is a selfdistributive idempotent right [[quasigroup]]. In more detail, a \textbf{quandle} is a [[rack]] obeying the law \begin{displaymath} a \triangleright a = a \end{displaymath} or equivalently \begin{displaymath} a \triangleleft a = a \, . \end{displaymath} In other words, a quandle is a set $Q$ equipped with two binary operations, $\triangleright$ and $\triangleleft$, obeying the laws: \begin{displaymath} a \triangleright (b \triangleright c) = (a \triangleright b)\triangleright (a \triangleright c) \end{displaymath} \begin{displaymath} (c \triangleleft b) \triangleleft a = (c \triangleleft a)\triangleleft (b \triangleleft a) \end{displaymath} \begin{displaymath} (a \triangleright b)\triangleleft a = b \end{displaymath} \begin{displaymath} a \triangleright (b \triangleleft a) = b \end{displaymath} \begin{displaymath} a \triangleright a = a \end{displaymath} \begin{displaymath} a \triangleleft a = a \end{displaymath} Given laws 3 and 4, the operation $\triangleright$ determines the operation $\triangleleft$, and vice versa, and then law 1 is equivalent to law 2, while law 5 is equivalent to law 6. So, this definition has a certain redundancy built in. See [[rack]] for more discussion of related points. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} Every [[group]] gives a quandle where the operations come from conjugation: \begin{displaymath} a \triangleright b = a b a^{-1} \end{displaymath} \begin{displaymath} b \triangleleft a = a^{-1} b a \end{displaymath} In fact, every equational law satisfied by [[conjugation]] in a group follows from the quandle axioms. So, one can think of a quandle as what is left of a group when we forget multiplication, the identity, and inverses, and only remember the operation of conjugation. Every tame knot in $\mathbb{R}^3$ has a ``fundamental quandle''. To define this, one can note that the [[fundamental group]] of the knot complement, or [[knot group]], has a presentation (the [[Wirtinger presentation]]) in which the relations only involve conjugation. So, this presentation can also be used as a presentation of a quandle. The fundamental quandle is a very powerful invariant of knots. In particular, if two knots have [[isomorphism|isomorphic]] fundamental quandles then there is a [[homeomorphism]] of $\mathbb{R}^3$, possibly orientation reversing, taking one knot to the other. Less powerful but more easily computable invariants of knots may be obtained by counting the homomorphisms from the knot quandle to a fixed quandle $Q$. Since the Wirtinger presentation has one generator for each strand in a [[knot diagram]], these invariants can be computed by counting ways of labelling each strand by an element of $Q$, subject to certain constraints easily read off from a diagram of the knot. More sophisticated invariants of this sort can be constructed with the help of quandle [[cohomology]]. The Alexander quandles are also important, since they can be used to compute the [[Alexander polynomial]] of a knot. Let $A$ be a module over the ring $\mathbb{Z}[t, t^{-1}]$ of [[Laurent polynomial|Laurent polynomials]] in one variable. Then the \textbf{Alexander quandle} consists of $A$ made into a quandle with the left action given by \begin{displaymath} a \triangleright b = t a + (1-t)b \end{displaymath} Analogous to how evaluating the Alexander polynomial at $t = -1$ (and then taking absolute value) defines the \emph{determinant} of a knot, similarly, instantiating the Alexander quandle at $t = -1$ gives rise to the \textbf{dihedral quandle} \begin{displaymath} a \triangleright b = 2b - a \end{displaymath} which, when interpreted as an action on the ring $\mathbb{Z}_n$ of integers modulo $n$, may be used to define the classical notion of [[colorable knot|n-colorability]] of a knot. [[rack|Racks]] are a useful generalization of quandles in topology, since while quandles can represent knots on a round linear object (such as rope or a thread), racks can represent ribbons, which may be twisted as well as knotted. A quandle $Q$ is said to be \textbf{involutory} if it obeys the law \begin{displaymath} a \triangleright (a \triangleright b) = b \end{displaymath} or equivalently \begin{displaymath} (b \triangleleft a) \triangleleft a = b \end{displaymath} Any [[symmetric space]] gives an involutory quandle, where $a \triangleright b$ is the result of `reflecting $b$ through $a$'. In fact this leads to an elegant definition of symmetric spaces. Note that involutory quandles are algebras of a certain [[Lawvere theory]], since [[rack|racks]] are already algebras of a Lawvere theory, and involutory quandles are racks obeying some extra equational laws. We may thus define involutory quandle objects in any [[category]] with finite [[products]], such as the category of [[smooth manifolds]]. Loos has shown that a connected symmetric space is the the same as an involutory quandle object $Q$ in the category of smooth manifolds with the additional properties that: \begin{itemize}% \item each point $a$ is an \emph{isolated} fixed point of the operation $a \triangleright -$. \item $Q$ is connected. \end{itemize} This fact is Theorem I.4.3. in: \begin{itemize}% \item Wolgang Bertram, \emph{The Geometry of Jordan and Lie Structures}, Lecture Notes in Mathematics \textbf{1754}, Springer, Berlin, 2000. \end{itemize} He attributes this result to: \begin{itemize}% \item Ottmar Loos, \emph{Symmetric Spaces I}, Chapter II, Benjamin, New York, 1969. \end{itemize} \hypertarget{related_entries}{}\subsection*{{Related entries}}\label{related_entries} \begin{itemize}% \item [[rack]] \item [[shelf]] \end{itemize} \hypertarget{links}{}\subsection*{{Links}}\label{links} \begin{itemize}% \item Wikipedia: \href{http://en.wikipedia.org/wiki/Racks_and_quandles}{Racks and quandles} \item Gavin Wraith, \href{http://www.wra1th.plus.com/gcw/rants/math/Rack.html}{A personal story about knots}. \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Surveys are \begin{itemize}% \item S. Nelson, \emph{What is a Quandle?} , Notices AMS \textbf{63} no.4 (2016) pp.378-380. (\href{http://www.ams.org/publications/journals/notices/201604/rnoti-p378.pdf}{pdf}) \item J. Scott Carter, \emph{A survey of quandle ideas}, (\href{http://arxiv.org/abs/1002.4429}{arxiv}). \end{itemize} A monograph is \begin{itemize}% \item M. Elhamdadi, S. Nelson, \emph{Quandles: An Introduction to the Algebra of Knots} , AMS Providence 2015. (\href{http://bookstore.ams.org/stml-74}{link}) \end{itemize} The paper by Crans makes it clear that quandles are algebras of a [[Lawvere theory]], so that quandles may be defined in any [[cartesian monoidal category]] (a category with finite [[products]]). It also shows that any Lie algebra gives a quandle in the category of cocommutative [[coalgebra|coalgebras]]. \begin{itemize}% \item Alissa Crans, \emph{Shelves, racks, spindles and quandles}, (\href{http://arxiv.org/PS_cache/math/pdf/0409/0409602v1.pdf#page=56}{arXiv}, in \emph{Lie 2-Algebras}). \end{itemize} Other research papers: \begin{itemize}% \item David Joyce, \emph{A classifying invariant of knots; the knot quandle}, J. Pure Appl. Alg. \textbf{23} (1982), 37-65, , \href{http://www.ams.org/mathscinet-getitem?mr=638121}{MR83m:57007}, (\href{http://www.sciencedirect.com/science/article/pii/0022404982900779/pdf?md5=cc81b2cf5a01afc9277d58d10128878a&pid=1-s2.0-0022404982900779-main.pdf}{pdf}). \item David Joyce, \emph{Simple quandles}, J. Algebra \textbf{79} (1982), no. 2, 307--318, , \href{http://www.ams.org/mathscinet-getitem?mr=682881}{MR84d:20078} \item Seiichi Kamada, \emph{Knot invariants derived from quandles and racks}, (\href{http://arxiv.org/abs/math/0211096}{arXiv}). \item J. Scott Carter, Masahico Saito, \emph{Quandle homology theory and cocycle knot invariants}, (\href{http://arxiv.org/abs/math/0112026}{arXiv}). \item Michael Eisermann, \emph{Quandle coverings and their Galois correspondence}, (\href{http://www.igt.uni-stuttgart.de/eiserm/publications/qcovering.pdf}{pdf}). \item Aaron Kaestner, Sam Nelson, Leo Selker, \emph{Parity biquandle invariants of virtual knots}, \href{http://arxiv.org/abs/1507.05583}{arxiv/1507.05583} \item Dominique Bourn, \emph{Partial Mal'tsevness and category of quandles}, Talk at CT2015, \href{http://ct2015.web.ua.pt/abstracts/bourn_d.pdf}{abstract}, \href{http://ct2015.web.ua.pt/slides/Bourn.pdf}{slides pdf} [[!redirects quandle]] [[!redirects quandles]] \end{itemize} \end{document}