\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{quantization of 3d Chern-Simons theory} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{quantum_field_theory}{}\paragraph*{{Quantum field theory}}\label{quantum_field_theory} [[!include functorial quantum field theory - contents]] \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{Idea}{Idea}\dotfill \pageref*{Idea} \linebreak \noindent\hyperlink{something_more}{Something more}\dotfill \pageref*{something_more} \linebreak \noindent\hyperlink{space_of_chernsimons_quantum_states}{Space of Chern-Simons quantum states}\dotfill \pageref*{space_of_chernsimons_quantum_states} \linebreak \noindent\hyperlink{space_of_wzwmodel_precorrelators}{Space of WZW-model pre-correlators}\dotfill \pageref*{space_of_wzwmodel_precorrelators} \linebreak \noindent\hyperlink{ModularFunctorAndEquivariantEllipticCohomology}{Modular functor and equivariant elliptic cohomology}\dotfill \pageref*{ModularFunctorAndEquivariantEllipticCohomology} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{References}{References}\dotfill \pageref*{References} \linebreak \hypertarget{Idea}{}\subsection*{{Idea}}\label{Idea} This entry discusses the full ([[non-perturbative quantum field theory|non-perturbative]]) [[quantization]] of the [[prequantum field theory|prequantum]] data of standard 3d [[Chern-Simons theory]] (induced from a suitable [[Lie group]] and [[invariant polynomial]]/[[second Chern class]] [[action functional]]) to a [[3d TQFT]]. (For the [[perturbative QFT|perturbative quantization]] of [[Chern-Simons theory]] see \href{Chern-Simons+theory#PerturbativeQuantization}{there}). Existing literature knows three sectors of this problem, which overlap but do not coincide \begin{enumerate}% \item [[path integral quantization]]. This may be made precise sense of in [[perturbation theory]] where it involves lots of interesting structure such as [[analytic torsion]] (\href{Chern-Simons#theory#Witten89}{Witten 89}). However, being just [[perturbation theory]] it is just an approximation to the full answer. \item [[geometric quantization]] yields the full (non-pertutbative quantization) in [[codimension]] 1, but does not say anything about codimension 0. \item The [[Reshetikhin-Turaev construction]] produces a [[3d TQFT]] from algebraic data that is naturally associated with the prequantum data defining Chern-Simons theory (such as the category of [[positive energy representations]] of the [[loop group]] of the given [[gauge group]] $G$, or else of a [[quantum group]] \hyperlink{Sawin06}{Sawin 06}), but it is not a priori clear that this 3d quantum field theory is genuinely the result of quantizing the Chern-Simons [[action functional]]. \end{enumerate} The known relation between the second and the third point here is the following: That the complex-geometric [[modular functor]] obtained from [[geometric quantization]] of Chern-Simons theory as in (\hyperlink{AxelrodPietraWitten91}{Axelrod-Pietra-Witten 91}, \hyperlink{Hitchin90}{Hitchin 90}) coincides with that of [[conformal blocks]] of the [[WZW model]] was shown in (\hyperlink{Laszlo98}{Laszlo 98},see also \hyperlink{Andersen11}{Andersen 11}, \hyperlink{Andersen12}{Andersen 12}). That this in turn indeed satisfies the required [[sewing law]] (and hence really is a modular functor in the strong sense) was shown in (\hyperlink{TsuchiyaUenoYamada}{Tsuchiya-Ueno-Yamada}). By \href{modular%20functor#TopologicalLift}{deprojectivization} these constructions yield a topological modular functor of the form also obtained from the [[Reshetikhin-Turaev construction]]. These (topological) modular functors are fixed by their [[genus]]-0 data (\hyperlink{AndersenUeno06}{Andersen-Ueno 06}) which is equivalently the datum of a (weakly) [[modular tensor category]]. Hence for matching [[geometric quantization]] of 3d Chern-Simons theory to the [[Reshetikhin-Turaev construction]] one has to match the [[modular tensor categories]] obtained from the [[conformal blocks]] of the [[WZW model]] in genus-0 to that associated with the coresponding [[quantum groups]]. This works (\hyperlink{Ostrik14}{Ostrik 14}). \hypertarget{something_more}{}\subsection*{{Something more}}\label{something_more} \begin{quote}% random notes, needs to be brought into shape \end{quote} \hypertarget{space_of_chernsimons_quantum_states}{}\subsubsection*{{Space of Chern-Simons quantum states}}\label{space_of_chernsimons_quantum_states} Chern-Simons [[action functional]] \begin{displaymath} \exp(\tfrac{i}{\hbar}S_{CS}) \colon \mathbf{Fields}_{CS} \longrightarrow \mathbf{B}^{n+1} U(1)_{conn} \end{displaymath} given a [[closed manifold]] $\Sigma_n$ then choice of [[complex structure]] $\mathbf{\Sigma}_n$ on $\Sigma_n$ is supposed to naturally induce a [[complex structure]] on the space of (on-shell) fields over $\Sigma_n$ \begin{displaymath} \mathbf{Fields}_{CS}(\mathbf{\Sigma}_n) \end{displaymath} Moreover, [[transgression]] of $\exp(\tfrac{i}{\hbar}S)$ to $\mathbf{Fields}_{CS}(\Sigma)$ is supposed to yield a [[holomorphic line bundle]] with connection with respect to that complex structure \begin{displaymath} \exp(\tfrac{i}{\hbar}S(\mathbf{\Sigma}_n)) \colon \mathbf{Fields}_{CS}(\mathbf{\Sigma}_n) \longrightarrow \mathbf{B}U(1)_{conn} \,. \end{displaymath} This is the [[prequantum line bundle]] of the Chern-Simons theory, already equipped with a [[Kähler polarization]]. Accordingly, the [[geometric quantization]] of the CS action functional assigns to $\Sigma_n$ the [[Hilbert space]] $\mathcal{H}_{\mathbf{\Sigma}}$ of holomorphic sections of $\exp(\tfrac{i}{\hbar}S(\mathbf{\Sigma}_n))$. As the complex structure $\mathbf{\Sigma}_n$ on $\Sigma_n$ varies over the [[moduli stack of complex structures]] $\mathcal{M}_{\Sigma}$, these vector spaces $\mathcal{H}_{\mathbf{\Sigma}_n}$ form a [[vector bundle]] with projective flat connection (the \emph{[[Hitchin connection]]}) on the moduli stack \begin{displaymath} \itexarray{ \mathcal{H} \\ \downarrow \\ \mathcal{M}_{\Sigma} } \end{displaymath} The assignment \begin{displaymath} \Sigma_n \mapsto \mathcal{H}_{\Sigma} \end{displaymath} natural in [[diffeomorphisms]] of $\Sigma$ is called the \emph{[[modular functor]]}, this we focus on more \hyperlink{ModularFunctorAndEquivariantEllipticCohomology}{below} One such section $\Psi$ is to be singled out. For instance if $\exp(\tfrac{i}{\hbar}S(\Sigma_n))$ is a [[theta characteristic]] then there is up to scale a unique holomorphic section. This singling-out is formalized by the [[FRS-formalism]]. See there for more. \hypertarget{space_of_wzwmodel_precorrelators}{}\subsubsection*{{Space of WZW-model pre-correlators}}\label{space_of_wzwmodel_precorrelators} Under the [[AdS3-CFT2 and CS-WZW correspondence]] the states of Chern-Simons theory also correspond to [[partition functions]] of the [[gauged WZW model]] and hence to [[generating functions]] for [[correlation functions]] of the actual [[WZW model]]. The [[field (physics)|fields]] $\mathbf{Fields}(\Sigma_n)$ may also be thought of as the [[sources]] of a (higher) [[gauged WZW model]] on $\Sigma$. The [[holographic principle]] says that the [[quantum state]]/[[wavefunction]] \begin{displaymath} \Psi \in \Gamma(\mathbf{Fields}_{CS}(\mathbf{\Sigma}_n), L) \end{displaymath} is also the [[generating function]] for the [[correlators]] of the [[WZW model]] on $\Sigma_n$, meaning that its [[functional derivatives]] \begin{uremark} \end{uremark} with respect to the Chern-Simons-[[field (physics)|fields]], hence the WZW [[sources]], are the [[n-point functions]] of the WZW model for [[current algebra]] insertions, as indicated (e.g. \hyperlink{Gawedzki99}{Gawdzki 99 (4.23), 5.1}) \hypertarget{ModularFunctorAndEquivariantEllipticCohomology}{}\subsubsection*{{Modular functor and equivariant elliptic cohomology}}\label{ModularFunctorAndEquivariantEllipticCohomology} Discussion of [[equivariant elliptic cohomology]] (see there at \emph{\href{equivariant+elliptic+cohomology#InterpretationInQuantumFieldTheory}{interpretation in QFT}}) shows that the construction of the [[modular functor]] refines from equipping $\Sigma$ with [[complex structure]] to equipping it with [[arithmetic geometry|arithmetic structure]]. Hence for $\Sigma$ a [[torus]] it refines from structures of [[elliptic curves]] over the complex numbers to general arithmetic elliptic curves (over the [[integers]]) and in fact to [[derived elliptic curves]] (over the [[sphere spectrum]]). Hence eventually the theory of [[geometric quantization]] needs to be refined to admit [[polarizations]] in [[arithmetic geometry]]. See at \emph{[[differential cohesion and idelic structure]]} for more on this. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Donaldson-Uhlenbeck-Yau theorem]] \item [[Narasimhan-Seshadri theorem]] \item [[Harder-Narasimhan theorem]] \item [[equivariant elliptic cohomology]] \end{itemize} \hypertarget{References}{}\subsection*{{References}}\label{References} Basics are recalled for instance in \begin{itemize}% \item Fernando Falceto, [[Krzysztof Gaw?dzki]], \emph{Chern-Simons States at Genus One}, Commun.Math.Phys. 159 (1994) 549-580 (\href{http://arxiv.org/abs/hep-th/9211003}{arXiv:hep-th/9211003}) \item [[Krzysztof Gaw?dzki]], \emph{Conformal field theory: a case study} in Y. Nutku, C. Saclioglu, T. Turgut (eds.) \emph{Frontier in Physics} 102, Perseus Publishing (2000) (\href{http://xxx.lanl.gov/abs/hep-th/9904145}{hep-th/9904145}) \item Yasuhiro Abe, \emph{Application of abelian holonomy formalism to the elementary theory of numbers} (\href{http://arxiv.org/abs/1005.4299}{arXiv:1005.4299}) \end{itemize} The [[geometric quantization]] of 3d CS theory in codimension 1 is due to \begin{itemize}% \item [[Scott Axelrod]], S. Della Pietra, [[Edward Witten]], \emph{Geometric quantization of Chern-Simons gauge theory}, Jour. Diff. Geom. 33 (1991), 787-902. (\href{http://projecteuclid.org/euclid.jdg/1214446565}{EUCLID}) \item [[Nigel Hitchin]], \emph{Flat connections and geometric quantization}, : Comm. Math. Phys. Volume 131, Number 2 (1990), 347-380. (\href{http://projecteuclid.org/euclid.cmp/1104200841}{Euclid}) \end{itemize} (see also at \emph{[[Hitchin connection]]}). The [[3d TQFT]] candidate for quantum CS theory in the form of the [[Reshetikhin-Turaev construction]] and the corresponding [[modular tensor category]] data is discussed in \begin{itemize}% \item Reshetikhin; Turaev, \emph{Invariants of 3-manifolds via link polynomials and quantum groups}. Invent. Math. 103 (1991), no. 3, 547--597. (\href{http://mathlab.snu.ac.kr/~top/quantum/article/Reshetikhin01.pdf}{pdf}) \item B. Bakalov \& [[Alexandre Kirillov]], \emph{Lectures on tensor categories and modular functors} AMS, University Lecture Series, (2000) (\href{http://www.math.sunysb.edu/~kirillov/tensor/tensor.html}{web}). \item [[Stephen Sawin]], \emph{Quantum groups at roots of unity and modularity} J. Knot Theory Ramifications 15 (2006), no. 10, 1245--1277 (\href{http://arxiv.org/abs/math/0308281}{arXiv:0308281}) \item [[Victor Ostrik]], \emph{\href{http://mathoverflow.net/a/178304/381}{MO comment August 2014}} \end{itemize} The relation between the [[modular functor]] obtained from the [[conformal blocks]] of the [[WZW model]] and from geometric quantization of CS theory is discussed in \begin{itemize}% \item [[Yves Laszlo]] \emph{Hitchin's and WZW connection are the same}, J. Differential Geom. 49 (1998), no. 3, 547--576 (\href{http://www.emis.de/journals/NYJM/JDG/archive/vol.49/3_5.pdf}{pdf}) \item Tsuchiya; K Ueno; Yamada, \emph{Conformal field theory on universal family of stable curves with gauge symmetries}, Integrable systems in quantum field theory and statistical mechanics, 459--566. \item [[Jørgen Andersen]], K. Ueno, \emph{Modular functors are determined by their genus zero data}, Journal of Quantum Topology (\href{http://arxiv.org/abs/math/0611087}{arXiv:math/0611087}) \end{itemize} Discussion specific to [[special unitary group|special unitary]] [[gauge group]] is in \begin{itemize}% \item [[Jørgen Andersen]], K. Ueno, \emph{Abelian Conformal Field theories and Determinant Bundles}, International Journal of Mathematics, 18 919 - 993 (2007). \item [[Jørgen Andersen]], K. Ueno, \emph{Geometric Construction of Modular Functors from Conformal Field Theory}, Journal of Knot theory and its Ramifications, 16 127 -- 202, (2007). \item [[Jørgen Andersen]], K. Ueno, \emph{Construction of the Reshetikhin-Turaev TQFT via Conformal Field Theory} (\href{http://arxiv.org/abs/1110.5027}{arXiv:1110.5027}) \item [[Jørgen Andersen]], \emph{A geometric formula for the Witten-Reshetikhin-Turaev Quantum Invariants and some applications} (\href{http://arxiv.org/abs/1206.2785}{arXiv:1206.2785}) \end{itemize} For discussion of the state of the proof see also \begin{itemize}% \item MO, \emph{\href{http://mathoverflow.net/questions/86792/why-hasnt-anyone-proved-that-the-two-standard-approaches-to-quantizing-chern-si}{Why hasn't anyone proved that the two standard approaches to quantizing Chern-Simons theory are equivalent?}} \end{itemize} and in particular \href{http://mathoverflow.net/a/185401/381}{this reply} by [[Andre Henriques]]. Detailed review in the case of abelian Chern-Simons theory includes \begin{itemize}% \item Spencer D. Stirling, \emph{Abelian Chern-Simons theory with toral gauge group, modular tensor categories, and group categories} (\href{http://arxiv.org/abs/0807.2857}{arXiv:http://arxiv.org/abs/0807.2857v1}) \end{itemize} Discussion in terms of [[Weyl quantization]] of [[Wilson lines]] and details on the role of [[theta functions]] is in Discussion of [[quantization of Chern-Simons theory]] in terms of [[Weyl quantization]] and [[skein relations]] is in \begin{itemize}% \item [[Jørgen Andersen]], \emph{Deformation quantization and geometric quantization of abelian moduli spaces}, Commun. Math. Phys., 255 (2005), 727--745 \item [[Razvan Gelca]], [[Alejandro Uribe]], \emph{The Weyl quantization and the quantum group quantization of the moduli space of flat SU(2)-connections on the torus are the same}, Commun.Math.Phys. 233 (2003) 493-512 (\href{http://arxiv.org/abs/math-ph/0201059}{arXiv:math-ph/0201059}) \item [[Razvan Gelca]], [[Alejandro Uribe]], \emph{From classical theta functions to topological quantum field theory} (\href{http://arxiv.org/abs/1006.3252}{arXiv:1006.3252}, \href{http://www.math.ttu.edu/~rgelca/berk.pdf}{slides pdf}) \item [[Razvan Gelca]], [[Alejandro Uribe]], \emph{Quantum mechanics and non-abelian theta functions for the gauge group $SU(2)$} (\href{http://arxiv.org/abs/1007.2010}{arXiv:1007.2010}) \end{itemize} Another approach is \begin{itemize}% \item [[Daniel Freed]], [[Mike Hopkins]], [[Constantin Teleman]], [[Jacob Lurie]], \emph{\href{http://ncatlab.org/nlab/show/Topological+Quantum+Field+Theories+from+Compact+Lie+Groups#3dCSFullyExtended}{TQFT from compact Lie groups -- 3d Chern-Simons as a fully extended TQFT}}. \end{itemize} [[!redirects quantization of Chern-Simons theory]] \end{document}