\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{quantomorphism group} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{geometric_quantization}{}\paragraph*{{Geometric quantization}}\label{geometric_quantization} [[!include geometric quantization - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{traditional_construction}{Traditional construction}\dotfill \pageref*{traditional_construction} \linebreak \noindent\hyperlink{InHigherGeometry}{In higher geometry}\dotfill \pageref*{InHigherGeometry} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{smooth_structure}{Smooth structure}\dotfill \pageref*{smooth_structure} \linebreak \noindent\hyperlink{group_extension}{Group extension}\dotfill \pageref*{group_extension} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{CoveringAnAffineSymplecticGroup}{Covering an affine symplectic group}\dotfill \pageref*{CoveringAnAffineSymplecticGroup} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{References}{References}\dotfill \pageref*{References} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{SmoothManifoldStructure}{Smooth manifold structure}\dotfill \pageref*{SmoothManifoldStructure} \linebreak \noindent\hyperlink{examples_2}{Examples}\dotfill \pageref*{examples_2} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Given a ([[presymplectic form|pre]])[[symplectic manifold]] $(X,\omega)$, its \emph{quantomorphism group} is the [[Lie group]] that [[Lie integration|integrates]] the [[Lie algebra|Lie bracket]] inside the [[Poisson algebra]] of $(X, \omega)$. This is a [[circle group]]-[[central extension]] of the group of [[Hamiltonian symplectomorphisms]]. It extends and generalizes the [[Heisenberg group]] of a [[symplectic vector space]]. (Warning on terminology: A more evident name for the quantomorphism group might seem to be ``Poisson group''. But this already means something different, see \emph{[[Poisson Lie group]]}.) \hypertarget{traditional_construction}{}\subsubsection*{{Traditional construction}}\label{traditional_construction} Over a [[symplectic manifold]] $(X, \omega)$ an explicit construction of the corresponding quantomorphism group is obtained by choosing $(P \to X, \nabla)$ a [[prequantum circle bundle]], regarded with an [[Ehresmann connection]] 1-form $A$ on $P$, and then defining \begin{displaymath} QuantomorphismGroup \hookrightarrow Diff(P) \end{displaymath} to be the [[subgroup]] of the [[diffeomorphism group]] $P \stackrel{\simeq}{\to} P$ on those [[diffeomorphisms]] that preserve $A$. In other words, the quantomorphism group is the group of equivalences of [[connection on a bundle|bundles with connection]] that need not cover the identity [[diffeomorphism]] on the base manifold $X$. Notice that the tuple $(P,A)$ is a [[regular contact manifold]] (see the discussion there), and so the quantomorphism group is equivalently that of [[contactomorphisms]] $(P,A) \to (P,A)$ of weight 0. This is an infinite-dimensional [[Lie group]]. References discussing its [[infinite-dimensional manifold]]-structure are collected \hyperlink{SmoothManifoldStructure}{below}. But the group has immediately the structure of a group in [[diffeological spaces]] (making it a [[smooth group]]) (\hyperlink{Souriau79}{Souriau 79}). \hypertarget{InHigherGeometry}{}\subsubsection*{{In higher geometry}}\label{InHigherGeometry} This perspective lends itself to a more abstract description in [[higher differential geometry]]: we may regard the [[prequantum circle bundle]] as being modulated by a morphism \begin{displaymath} \nabla : X \to \mathbf{B} U(1)_{conn} \end{displaymath} in the [[cohesive (∞,1)-topos]] $\mathbf{H} =$ [[Smooth∞Grpd]], with [[domain]] the given symplectic manifold and [[codomain]] the smooth [[moduli stack]] for [[circle n-bundle with connection|circle bundles with connection]]. This in turn may be regarded as an object $\nabla \in \mathbf{H}_{/\mathbf{B}U(1)_{conn}}$ in the [[slice (∞,1)-topos]]. Then the quantomorphism group is the [[automorphism group]] \begin{displaymath} \mathbf{QuantMorph}(X,\nabla) \coloneqq \underset{\mathbf{B}U(1)_{conn}}{\prod} \mathbf{Aut}(\nabla) \end{displaymath} in $\mathbf{H}$, or rather its [[differential concretification]] (\hyperlink{FRS13}{FRS 13}). From this it is clear what the quantomorphism [[∞-group]] of an [[n-plectic ∞-groupoid]] should be: for \begin{displaymath} \nabla : X \to \mathbf{B}^n U(1)_{conn} \end{displaymath} the morphism modulating a [[prequantum circle n-bundle]], the corresponding quantomorphism $n$-group is again $Aut(\nabla)$, now formed in $\mathbf{H}_{/\mathbf{B}^n U(1)_{conn}}$ \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{smooth_structure}{}\subsubsection*{{Smooth structure}}\label{smooth_structure} The quantomorphism group for a [[symplectic manifold]] may naturally be equipped with the structure of a [[group object]] in [[ILH manifolds]] (\href{Omori}{Omori}, \href{RatiuSchmid}{Ratiu-Schmid}), as well as in [[convenient manifolds]] (\hyperlink{Vizman}{Vizman, prop.}). \hypertarget{group_extension}{}\subsubsection*{{Group extension}}\label{group_extension} \begin{prop} \label{}\hypertarget{}{} For $(X,\omega)$ a [[connected topological space|connected]] [[symplectic manifold]] there is a [[central extension of groups]] \begin{displaymath} 1 \to U(1) \to QuantomorphismGroup(X,\omega) \to HamiltonianSymplectomorphisms(X,\omega) \to 1 \,. \end{displaymath} \end{prop} This is due to (\hyperlink{Kostant}{Kostant}). It appears also (\hyperlink{Brylinski93}{Brylinski, prop. 2.4.5}). [[!include geometric quantization extensions - table]] \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{CoveringAnAffineSymplecticGroup}{}\subsubsection*{{Covering an affine symplectic group}}\label{CoveringAnAffineSymplecticGroup} Given a [[symplectic vector space]] $(V,\omega)$ one may consider the restriction of its [[quantomorphism group]] to the [[affine symplectic group]] $ASp(V,\omega)$ (\hyperlink{RobbinSalamon93}{Robbin-Salamon 93, corollary 9.3}) \begin{displaymath} \itexarray{ ESp(V,\omega) &\hookrightarrow& QuantMorph(V,\omega) \\ \downarrow && \downarrow \\ ASp(V,\omega) &\hookrightarrow& HamSympl(V,\omega) } \end{displaymath} Sometimes (e.g. \hyperlink{RobbinSalamon93}{Robbin-Salamon 93, p. 30}) this $ESp(V,\omega)$ is called the \emph{extended symplectic group}, but maybe to be more specific one should at the very least say ``[[extended affine symplectic group]]'' or ``extended inhomogeneous symplectic group'' (\hyperlink{ARZ06}{ARZ 06, prop. V.1}). Notice that the further restriction to $V$ regarded as the [[translation group]] over itself is the [[Heisenberg group]] $Heis(V,\omega)$ \begin{displaymath} \itexarray{ Heis(V,\omega) &\hookrightarrow& ESp(V,\omega) &\hookrightarrow& QuantMorph(V,\omega) \\ \downarrow && \downarrow && \downarrow \\ V &\hookrightarrow& ASp(V,\omega) &\hookrightarrow& HamSympl(V,\omega) } \end{displaymath} The group $ESp(V,\omega)$ is that of those [[quantomorphisms]] which come from [[quadratic Hamiltonians]]. Those elements covering elements in the [[symplectic group]] instead of the [[affine symplectic group]] come from [[homogeneously quadratic Hamiltonians]] (e.g. \hyperlink{RobbinSalamon93}{Robbin-Salamon 93, prop. 10.1}). In fact $ESp$ is the [[semidirect product]] of the [[metaplectic group]] $Mp(V,\omega)$ with the [[Heisenberg group]] (\hyperlink{ARZ06}{ARZ 06, prop. V.1}, see also \hyperlink{Low12}{Low 12}) \begin{displaymath} ESp(V,\omega) \simeq Heis(V,\omega) \rtimes Mp(V,\omega) \,. \end{displaymath} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[conserved current]] \item [[Hamiltonian action]], [[classical anomaly]] \end{itemize} [[!include slice automorphism groups in higher prequantum geometry - table]] [[!include higher Atiyah groupoid - table]] \hypertarget{References}{}\subsection*{{References}}\label{References} \hypertarget{general}{}\subsubsection*{{General}}\label{general} Original accounts are \begin{itemize}% \item [[Jean-Marie Souriau]], \emph{Structure des systemes dynamiques} Dunod, Paris (1970) Translated and reprinted as (see section V.18 for the quantomorphism group): [[Jean-Marie Souriau]], \emph{Structure of dynamical systems - A symplectic view of physics}, Brikh\"a{}user (1997) doi:\href{https://doi.org/10.1007/978-1-4612-0281-3}{10.1007/978-1-4612-0281-3} \item [[Bertram Kostant]], \emph{Quantization and unitary representations}, in \emph{Lectures in modern analysis and applications III}. Lecture Notes in Math. 170 (1970), Springer Verlag, 87---208 doi:\href{https://doi.org/10.1007/BFb0079068}{10.1007/BFb0079068} \end{itemize} A textbook account is in \begin{itemize}% \item [[Jean-Luc Brylinski]], section II.4 \emph{Loop spaces, characteristic classes and geometric quantization}, Birkh\"a{}user (1993) \end{itemize} and in \begin{itemize}% \item Rudolf Schmid, \emph{Infinite-dimensional Lie groups with applications to mathematical physics}, J. Geom. Symmetry Phys., Volume 1 (2004), 54-120. \href{https://projecteuclid.org/euclid.jgsp/1495505067}{Project Euclid} \end{itemize} The description in terms of automorphism in the slice $\infty$-topos over the moduli stack of (higher) connections is in \begin{itemize}% \item [[Domenico Fiorenza]], [[Chris Rogers]], [[Urs Schreiber]], \emph{[[schreiber:Higher geometric prequantum theory]]} (\href{http://arxiv.org/abs/1304.0236}{arXiv:1304.0236}) \end{itemize} and in section 4.4.17 of \begin{itemize}% \item \emph{[[schreiber:differential cohomology in a cohesive topos]]} \end{itemize} \hypertarget{SmoothManifoldStructure}{}\subsubsection*{{Smooth manifold structure}}\label{SmoothManifoldStructure} The [[diffeological space]]-structure ([[diffeological group]], [[smooth group]] structure) on the quantomorphism group is at least implicit in \begin{itemize}% \item [[Jean-Marie Souriau]], \emph{Groupes diff\'e{}rentiels}, in \emph{Differential Geometrical Methods in Mathematical Physics} (Proc. Conf., Aix-en-Provence/Salamanca, 1979), Lecture Notes in Math. 836, Springer, Berlin, (1980), pp. 91--128. (\href{http://www.ams.org/mathscinet-getitem?mr=607688}{MathSciNet}) \end{itemize} The [[ILH manifold|ILH group]] structure on the quantomorphism group is discussed in \begin{itemize}% \item H. Omori, \emph{Infinite dimensional Lie transformation groups}, Springer lecture notes in mathematics 427 (1974) \item T. Ratiu, R. Schmid, \emph{The differentiable structure of three remarkable diffeomorphism groups}, Math. Z. 177 (1981) \end{itemize} The [[convenient manifold|regular convenient Lie group]] structure is discussed in \begin{itemize}% \item Cornelia Vizman, \emph{Some remarks on the quantomorphism group} ([[VizmanQuantomorphism.pdf:file]]) \end{itemize} A [[metric]]-structure on quantomorphism groups is discussed in \begin{itemize}% \item Y. Eliashberg,; L. Polterovich, \emph{Partially ordered groups and geometry of contact transformations}. Geom.Funct.Anal.10(2000),no.6, 1448-1476. doi:\href{https://doi.org/10.1007/PL00001656}{10.1007/PL00001656}, arXiv:\href{https://arxiv.org/abs/math/9910065}{math/9910065} \end{itemize} \hypertarget{examples_2}{}\subsubsection*{{Examples}}\label{examples_2} The quantomorphisms over elements of the [[symplectic group]] of a [[symplectic vector space]] are discussed in \begin{itemize}% \item [[Irving Segal]], \emph{Transforms for operators and symplectic automorphisms over a locally compact abelian group}, Math. Scand. 13 (1963) 31-43 \item [[Joel Robbin]], [[Dietmar Salamon]], \emph{Feynman path integrals on phase space and the metaplectic representation} in [[Dietmar Salamon]] (ed.), \emph{Symplectic Geometry}, LMS Lecture Note series 192 (1993) ([[RobbinSalamonMetaplectic.pdf:file]]) \item [[Sergio Albeverio]], J. Rezende and J.-C. Zambrini, \emph{Probability and Quantum Symmetries. II. The Theorem of Noether in quantum mechanics}, Journal of Mathematical Physics 47, 062107 (2006) (\href{http://gfm.cii.fc.ul.pt/people/jczambrini/JMathPhys-47-062107.pdf}{pdf}) \item Stephen G. Low, \emph{Maximal quantum mechanical symmetry: Projective representations of the inhomogenous symplectic group}, J. Math. Phys. 55, 022105 (2014) (\href{http://arxiv.org/abs/1207.6787}{arXiv:1207.6787}) \end{itemize} [[!redirects quantomorphism]] [[!redirects quantomorphisms]] [[!redirects quantomorphism groups]] [[!redirects quantomorphism ∞-group]] [[!redirects quantomorphism ∞-groups]] [[!redirects quantomorphism infinity-group]] [[!redirects quantomorphism infinity-groups]] [[!redirects quantomorphism n-group]] [[!redirects quantomorphism n-groups]] [[!redirects higher quantomorphism group]] [[!redirects higher quantomorphism groups]] \end{document}