\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{quantum anomaly} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{differential_cohomology}{}\paragraph*{{Differential cohomology}}\label{differential_cohomology} [[!include differential cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{AnomalousActionFunctional}{Anomalous action functional}\dotfill \pageref*{AnomalousActionFunctional} \linebreak \noindent\hyperlink{fermionic_anomalies}{Fermionic anomalies}\dotfill \pageref*{fermionic_anomalies} \linebreak \noindent\hyperlink{higher_gaugetheoretic_anomalies}{Higher gauge-theoretic anomalies}\dotfill \pageref*{higher_gaugetheoretic_anomalies} \linebreak \noindent\hyperlink{AnomalousSymmetry}{Anomalous symmetry}\dotfill \pageref*{AnomalousSymmetry} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{anomalous_action_functional_2}{Anomalous action functional}\dotfill \pageref*{anomalous_action_functional_2} \linebreak \noindent\hyperlink{SpinningParticlesAndSuperBranes}{Spinning particles and super-branes}\dotfill \pageref*{SpinningParticlesAndSuperBranes} \linebreak \noindent\hyperlink{gravitational_anomaly}{Gravitational anomaly}\dotfill \pageref*{gravitational_anomaly} \linebreak \noindent\hyperlink{axial_anomaly}{Axial anomaly}\dotfill \pageref*{axial_anomaly} \linebreak \noindent\hyperlink{conformal_anomaly_of_the_string}{Conformal anomaly of the string}\dotfill \pageref*{conformal_anomaly_of_the_string} \linebreak \noindent\hyperlink{freedwitten_anomaly}{Freed-Witten anomaly}\dotfill \pageref*{freedwitten_anomaly} \linebreak \noindent\hyperlink{diaconescumoorewitten_anomaly}{Diaconescu-Moore-Witten anomaly}\dotfill \pageref*{diaconescumoorewitten_anomaly} \linebreak \noindent\hyperlink{m5brane_anomaly}{M5-Brane anomaly}\dotfill \pageref*{m5brane_anomaly} \linebreak \noindent\hyperlink{anomalous_symmetry_2}{Anomalous symmetry}\dotfill \pageref*{anomalous_symmetry_2} \linebreak \noindent\hyperlink{conformal_anomaly}{Conformal anomaly}\dotfill \pageref*{conformal_anomaly} \linebreak \noindent\hyperlink{other}{Other}\dotfill \pageref*{other} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{AnomalousActionFunction}{Anomalous action functional}\dotfill \pageref*{AnomalousActionFunction} \linebreak \noindent\hyperlink{ReferencesGaugeAnomaly}{Gauge anomaly}\dotfill \pageref*{ReferencesGaugeAnomaly} \linebreak \noindent\hyperlink{in_bvbrst_formulation}{In BV-BRST formulation}\dotfill \pageref*{in_bvbrst_formulation} \linebreak \noindent\hyperlink{other_2}{Other}\dotfill \pageref*{other_2} \linebreak \noindent\hyperlink{in_finitedimensional_quantum_mechanics}{In finite-dimensional quantum mechanics}\dotfill \pageref*{in_finitedimensional_quantum_mechanics} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} There are at least two things that are called \emph{quantum anomalies} in the context of [[quantum field theory]] \begin{itemize}% \item \textbf{anomalous action functional}: the [[action functional]] (in [[path integral|path integral quantization]]) is not a globally well defined [[function]], but instead a [[section]] of a [[line bundle]] on [[configuration space]]; \item \textbf{anomalous symmetry} (gauge anomaly): a symmetry of the [[action functional]] does not extend to a symmetry of the exponentiated action times the path integral measure; or equivalently the [[action]] of a group on classical [[phase space]] is not preserved by [[deformation quantization]]. \end{itemize} \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{AnomalousActionFunctional}{}\subsubsection*{{Anomalous action functional}}\label{AnomalousActionFunctional} There are two major kinds of [[action functionals]] that may be anomalous in that they are not actually [[function]]s/[[nonlinear functional|functional]]s on the configuration space of fields, but just [[section]]s of some [[line bundle]]: \begin{itemize}% \item theories with fermions (see e.g. [[spinors in Yang-Mills theory]]) whose [[action functional]] is given by a [[Dirac operator]], or else other fields whose action functional is given by a [[Fredholm operator]]. \item [[gauge theory|gauge theories]] with higher degree gauge fields ([[differential cohomology|differential cocycles]] of higher degree.) \end{itemize} \hypertarget{fermionic_anomalies}{}\paragraph*{{Fermionic anomalies}}\label{fermionic_anomalies} The [[path integral]] for a [[quantum field theory]] with [[fermion]]s can be decomposed into a [[fermionic path integral]] (see there for more details) over the [[fermionic field]]s followed by that over the [[bosonic field]]s. The former, a [[Berezin integral]], is typically well defined for a fixed configuration of the bosonic fields, but does not produce a well defined function on the space of all bosonic fields: but a \emph{twisted function} , a [[section]] of some [[line bundle]] called a [[determinant line bundle]] or, in $8k+2$ dimensions, its [[square root]], the [[Pfaffian line bundle]]. So to even start making sense of the remaining path integral over the bosonic degree of freedom, this [[determinant line bundle]] or the corresponding [[Pfaffian line bundle]] has to be trivializable. Its non-trivializability is the \emph{fermionic anomaly} . More in detail (\hyperlink{Freed86}{Freed 86}), the [[path integral]] over an [[Lagrangian]] of the form $(\overline \phi, D \phi)$ for \begin{displaymath} D \;\colon\; V \longrightarrow W \end{displaymath} a [[Fredholm operator]] computes the [[determinant]] of that operator. Formally this is a [[section]] of the [[determinant line bundle]] over the remaining [[field (physics)|fields]] \begin{displaymath} (det V)^\ast \otimes (det W) \simeq (det ker D)^\ast \otimes (det coker D) \,, \end{displaymath} where the left hand side makes sense and the equivalence holds for $V$ and $W$ finite dimensional, and where the right hand side is the definition of the expression for general [[Fredholm operators]]. ((\hyperlink{Freed86}{Freed 86, 1.})) In more detail this [[determinant line bundle]] also carries a [[connection]] on a bundle. To make the formal [[path integral]], which is a [[section]] of this bundle, into an actual function, one this bundle with connection needs to be trivializable and trivialized. The [[obstruction]] to this is the anomaly. \hypertarget{higher_gaugetheoretic_anomalies}{}\paragraph*{{Higher gauge-theoretic anomalies}}\label{higher_gaugetheoretic_anomalies} For the moment see [[Green-Schwarz mechanism]] for more. \hypertarget{AnomalousSymmetry}{}\subsubsection*{{Anomalous symmetry}}\label{AnomalousSymmetry} \begin{quote}% under construction \end{quote} Let \begin{displaymath} S : C \to \mathbb{R} \end{displaymath} be a (well defined) [[action functional]]. Write $P$ for its resolved [[covariant phase space]] in [[dg-geometry]] and \begin{displaymath} S^{BV} : P \to \mathbb{R} \end{displaymath} for the BV-action functional, both as given by [[BRST-BV formalism]]. If the action functional is local (comes from a [[Lagrangian]] on a [[jet bundle]]) the [[covariant phase space]] $P$ a priori only carries a [[presymplectic structure]]. But by BV-theory there exists an equivalent (homotopical) derived action functional $S_\Psi^{BV} : P \to \mathbb{R}$ such that $S_\Psi^{BV}$ does induce a genuine [[symplectic structure]] on the [[derived geometry|derived]] space $P$. For ordinary [[Poisson manifold]]s and hence [[symplectic manifold]]s [[Maxim Kontsevich]]`s theorem says that their [[deformation quantization]] always exist. But if $S$ is the [[action functional]] of a [[gauge theory]] then $P$ is in general a nontrivial derived [[infinity-Lie algebroid]] (its function algebra has ``ghosts'' and ``ghosts of ghost'': the [[Chevalley-Eilenberg algebra]] generators) and the theorem does not apply. Instead, the quantization of the derived symplectic space $P$ exists only if the first and second [[infinity-Lie algebroid cohomology]] of $P$ vanishes: These two cohomology groups \begin{displaymath} Anom_{gauge} = H^1(CE(P)) \oplus H^2(CE(P)) \end{displaymath} are called the \textbf{gauge anomaly} of the system. Only if they vanish does the [[quantization]] of the [[gauge theory]] encoded by $S$ exist. More concretely, the function algebra on $P$ is a graded-commutative [[dg-algebra]] equipped with a graded Poisson bracket $\{-,-\}_{BV}$ and an element $Q \in C^\infty(P)$ (the BV-BRST charge) whose [[Hamiltonian vector field]] is the [[derivation]] that is the [[differential]] of the dg-algebra $C^\infty(X)$. If the gauge anomaly does not vanish, then, while the deformation quantization of the graded algebra $C^\infty(P)$ to a non commutative graded algebra with commutator $[-,-]$ will exist, it may happen that the image $S$ of $Q$ under the quantization no longer satisfies the [[quantum master equation]] $[S,S] = \hbar \Delta S$. Therefore the [[derivation]] $[S,-]$ will not define a quantized [[differential]] and therefore the quantization of the graded-commutative [[dg-algebra]] $C^\infty(P)$ will only be a noncommutative algebra, not a non-commutative dg-algebra, hence will not be functions on a non-commutative space in [[derived geometry]]. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{anomalous_action_functional_2}{}\subsubsection*{{Anomalous action functional}}\label{anomalous_action_functional_2} \hypertarget{SpinningParticlesAndSuperBranes}{}\paragraph*{{Spinning particles and super-branes}}\label{SpinningParticlesAndSuperBranes} The [[sigma-model]] for a [[supersymmetry|supersymmetric]] fundamental [[brane]] on a target space $X$ has an anomaly coming from the nontriviality of [[Pfaffian line bundle]]s associated with the [[fermion]]ic fields on the worldvolume. These anomalies disappear (i.e. these bundles are trivializable) when the structure group of the [[tangent bundle]] of $X$ has a sufficiently high lift through the [[Whitehead tower]] of $O(n)$. \begin{itemize}% \item \textbf{Spin structure} the worldline anomaly for the spinning particle/superparticle vanishes when $X$ has [[Spin structure]] This is a classical result. A concrete derivation is in \begin{itemize}% \item [[Edward Witten]], \emph{Global anomalies in String theory} in \emph{Symposium on anomalies, geometry, topology} , World Scientific Publishing, Singapore (1985) \end{itemize} \item \textbf{String structure} the worldsheet anomaly for the spinning string/superstring in [[heterotic string theory]] vanishes (essentially) when $X$ has [[String structure]] This is originally due to Killingback and Witten. A commented list of literature is \href{http://golem.ph.utexas.edu/string/archives/000572.html}{here}. Recently [[Ulrich Bunke]] gave the rigorous proof \begin{itemize}% \item [[Ulrich Bunke]], \emph{String structures and trivialisations of a Pfaffian line bundle} (\href{http://arxiv.org/abs/0909.0846}{arXiv}) \end{itemize} \end{itemize} in terms of [[differential cohomology]] in general and [[differential string structure]]s in particular. \begin{itemize}% \item \textbf{Fivebrane structure} the worldvolume anomaly for the super-5-brane in [[dual heterotic string theory]] vanishes (essentially) when $X$ has [[Fivebrane structure]]. See there. \end{itemize} \hypertarget{gravitational_anomaly}{}\paragraph*{{Gravitational anomaly}}\label{gravitational_anomaly} \begin{itemize}% \item [[gravitational anomaly]] \end{itemize} \hypertarget{axial_anomaly}{}\paragraph*{{Axial anomaly}}\label{axial_anomaly} \begin{itemize}% \item [[axial anomaly]] \end{itemize} \hypertarget{conformal_anomaly_of_the_string}{}\paragraph*{{Conformal anomaly of the string}}\label{conformal_anomaly_of_the_string} The [[2d CFT]] on the [[worldsheet]] of the [[bosonic string]] (in flat space, without further background fields) has an anomaly unless the [[dimension|dimensional]] [[target space]] is $d = 26$. This is discussed as a condition of trivialization of a bundle in (\hyperlink{Freed86}{Freed 86, section 2}). A brief summary is stated \href{http://mathoverflow.net/a/99667/381}{this comment on MO}. For more see at [[conformal anomaly]] for more. \hypertarget{freedwitten_anomaly}{}\paragraph*{{Freed-Witten anomaly}}\label{freedwitten_anomaly} see at \emph{[[Freed-Witten anomaly]]}. \hypertarget{diaconescumoorewitten_anomaly}{}\paragraph*{{Diaconescu-Moore-Witten anomaly}}\label{diaconescumoorewitten_anomaly} see at \emph{[[Diaconescu-Moore-Witten anomaly]]} \hypertarget{m5brane_anomaly}{}\paragraph*{{M5-Brane anomaly}}\label{m5brane_anomaly} see at \emph{\href{M5-brane#AnomalyCancellation}{M5-brane anomaly}} \hypertarget{anomalous_symmetry_2}{}\subsubsection*{{Anomalous symmetry}}\label{anomalous_symmetry_2} \hypertarget{conformal_anomaly}{}\paragraph*{{Conformal anomaly}}\label{conformal_anomaly} For the moment see [[Liouville cocycle]]. \hypertarget{other}{}\subsubsection*{{Other}}\label{other} \begin{itemize}% \item [[RR-field tadpole]] \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[classical anomaly]] \item [[fiber bundles in physics]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item \hyperlink{AnomalousActionFunction}{References on anomalous action functionals} \item \hyperlink{ReferencesGaugeAnomaly}{References on gauge anomalies} \end{itemize} \hypertarget{AnomalousActionFunction}{}\subsubsection*{{Anomalous action functional}}\label{AnomalousActionFunction} The original articles on anomalous action functionals are \begin{itemize}% \item [[Luis Alvarez-Gaumé]] and [[Edward Witten]], \emph{Gravitational Anomalies} Nucl. Phys. B234 (1984) 269. \item [[Luis Alvarez-Gaumé]] and [[Paul Ginsparg]], \emph{The structure of gauge and gravitational anomalies} , Ann. Phys. 161 (1985) 423. (\href{http://inspirehep.net/record/202565/?ln=en}{spire}) \item [[Edward Witten]], \emph{Global gravitational anomalies} , Commun. Math. Phys. 100 (1985) 197. (\href{http://projecteuclid.org/euclid.cmp/1103943444}{EUCLID}) \end{itemize} A survey of these results is in the slides \begin{itemize}% \item Paolo Di Vecchia, \emph{Green-Schwarz anomaly cancellation} (2010) (\href{http://www.college-de-france.fr/media/par_ele/UPL47331_DiVecchia.4.pdf}{pdf}) \end{itemize} The mathematical formulation of this in terms of [[index theory]] is due to \begin{itemize}% \item [[Michael Atiyah]], [[Isadore Singer]], \emph{Dirac operators coupled to vector potentials}, Proc. Nat. Acad. Sci. USA \textbf{81}, 2597-2600 (1984) \item [[Jean-Michel Bismut]] and [[Daniel Freed]], \emph{The analysis of elliptic families. I. Metrics and connections on determinant bundles} , Comm. Math. Phys. 106 (1986), no. 1, 159--176. \item [[Jean-Michel Bismut]] and [[Daniel Freed]], \emph{The analysis of elliptic families. II. Dirac operators, eta invariants, and the holonomy theorem} , Comm. Math. Phys. 107 (1986), no. 1, 103--163. \end{itemize} and a clear comprehensive account of the situation (topological anomaly, geometric anomaly) is in \begin{itemize}% \item [[Raphael Flauger]], \emph{Anomalies and the Atiyah-Singer Index Theorem} (\href{http://www.ma.utexas.edu/~dafr/Index/Flauger.pdf}{pdf}) \item [[Daniel Freed]], \emph{Determinants, torsion, and strings}, Comm. Math. Phys. Volume 107, Number 3 (1986), 483-513. (\href{http://projecteuclid.org/euclid.cmp/1104116145}{Euclid}) \end{itemize} Slick formulation of these anomalies as [[invertible topological field theories]] is discussed in \begin{itemize}% \item [[Daniel Freed]], \emph{Anomalies and Invertible Field Theories}, talk at \href{http://scgp.stonybrook.edu/events/event-pages/string-math-2013}{StringMath2013} (\href{https://arxiv.org/abs/1404.7224}{arXiv.1404.7224}) \end{itemize} A physicists' monograph is \begin{itemize}% \item Reinhold A. Bertlmann, \emph{Anomalies in quantum field theory}, Oxford Science Publ., 1996, 2000 \end{itemize} A clear description of the quantum anomalies for higher gauge theories is in \begin{itemize}% \item [[Dan Freed]], \emph{[[Dirac charge quantization and generalized differential cohomology]]} (\href{http://arxiv.org/abs/hep-th/0011220}{arXiv}) \end{itemize} As an application of this, a detailed discussion of the cancellation of the anomaly of the [[supergravity C-field]] in 11-dimensional [[supergravity]] is in \begin{itemize}% \item [[Dan Freed]], [[Greg Moore]], \emph{Setting the quantum integrand of M-theory} (\href{http://arxiv.org/abs/hep-th/0409135}{arXiv:hep-th/0409135}) \end{itemize} The role of [[spin structure]]s as the anomaly cancellation condition for the spinning particle is discussed in \begin{itemize}% \item [[Edward Witten]], \emph{Global anomalies in String theory} in \emph{Symposium on anomalies, geometry, topology} , World Scientific Publishing, Singapore (1985) \end{itemize} The anomaly line bundles for [[self-dual higher gauge theory]] is discussed in \begin{itemize}% \item [[Samuel Monnier]], \emph{The anomaly line bundle of the self-dual field theory} (\href{http://arxiv.org/abs/1109.2904}{arXiv:1109.2904}) \end{itemize} Discussion in the context of [[extended topological field theory]] includes \begin{itemize}% \item [[Samuel Monnier]], \emph{Hamiltonian anomalies from extended field theories}, (\href{http://arxiv.org/abs/1410.7442}{arxiv/1410.7442}) \end{itemize} Anomaly field theories are discussed in \begin{itemize}% \item [[Samuel Monnier]], \emph{A Modern Point of View on Anomalies}, (\href{http://arxiv.org/abs/1903.02828}{arxiv/1903.02828}) \end{itemize} \hypertarget{ReferencesGaugeAnomaly}{}\subsubsection*{{Gauge anomaly}}\label{ReferencesGaugeAnomaly} The original work on the [[chiral anomaly]] is due to \begin{itemize}% \item [[Stephen Adler]]. \emph{Axial-Vector Vertex in Spinor Electrodynamics} Physical Review 177 (5): 2426. (1969) \item [[John Bell]], [[Roman Jackiw]], \emph{A PCAC puzzle: $\pi$0$\rightarrow$$\gamma$$\gamma$ in the $\sigma$-model``. Il Nuovo Cimento A 60: 47. (1969)} \end{itemize} See also \begin{itemize}% \item L. Faddeev and S. Shatashvili, ``Algebraic and Hamiltonian Methods in the theory of Nonabelian Anomalies,'' Theor. Math. Fiz., 60 (1984) 206; english transl. Theor. Math. Phys. 60 (1984) 770. \item B. Zumino, ``Chiral anomalies and differential geometry,'' in Relativity, Groups and Topology II, proceedings of the Les Houches summer school, B.S. DeWitt and R. Stora, eds. North-Holland, 1984. \end{itemize} \hypertarget{in_bvbrst_formulation}{}\paragraph*{{In BV-BRST formulation}}\label{in_bvbrst_formulation} General discussion in the context of [[BRST-BV formalism]] (breaking of the [[quantum master equation]] by quantum corrections) is discussed in \begin{itemize}% \item W. Troost, P. van Nieuwenhuizen, A. van Proeyen, \emph{Anomalies and the Batalin-Vilkovisky lagrangian formalism} (\href{http://adsabs.harvard.edu/abs/1990NuPhB.333..727T}{web}) \item [[Paul Howe]], [[Ulf Lindström]], P. White, \emph{Anomalies And Renormalization In The BRST-BV Framework} , Phys. Lett. B246 (1990) 430. \item J. Paris, W. Troost, \emph{Higher loop anomalies and their consistency conditions in nonlocal regularization} , Nucl. Phys. B482 (1996) 373 (\href{http://arxiv.org/abs/hep-th/9607215}{arXiv:hep-th/9607215}) \item [[Glenn Barnich]], \emph{Classical and quantum aspects of the extended antifield formalism} (\href{http://arxiv.org/abs/hep-th/0011120}{arXiv:hep-th/0011120}) \end{itemize} The fact that the anomaly sits in degree-1 BRST cohomology corresponds to the consistency condition discussed in \begin{itemize}% \item [[Julius Wess]] and B. Zumino, \emph{Consequences of anomalous Ward identities} , Phys. Lett. B37 (1971) 95 \item R. Stora, \emph{The Wess Zumino consistency condition: a paradigm in renormalized perturbation theory}, Fortsch. Phys. 54:175-182 (2006) \href{http://dx.doi.org/10.1002/prop.200510266}{doi} \end{itemize} Discussion of special applications in \begin{itemize}% \item F. De Jonghe, J. Paris and W. Troost, \emph{The BPHZ renormalised BV master equation and Two-loop Anomalies in Chiral Gravities} , Nucl. Phys. B476 (1996) 559 \href{http://arxiv.org/abs/hep-th/9502140}{arXiv:hep-th/9603012} \item J. Paris, \emph{Nonlocally regularized antibracket - antifield formalism and anomalies in chiral $W(3)$ gravity} , Nucl. Phys. B450 (1995) 357 (\href{http://arxiv.org/abs/hep-th/9502140}{arXiv:hep-th/9502140}) \item R. Amorim, N.R.F.Braga, R. Thibes, \emph{Axial and gauge anomalies in the field antifield quantization of the generalized Schwinger model} (\href{http://arxiv.org/abs/hep-th/9712014}{arXiv:hep-th/9712014}) \end{itemize} Discussion in the context of [[AQFT]] with [[functional analysis]] taken into account is in \begin{itemize}% \item section 5.3.3. in [[Katarzyna Rejzner]], \emph{Batalin-Vilkovisky formalism in locally covariant field theory} PhD thesis, Hamburg (2011) (\href{http://arxiv.org/abs/1111.5130}{arXiv:1111.5130}) \item [[Klaus Fredenhagen]], [[Katarzyna Rejzner]], \emph{Batalin-Vilkovisky formalism in perturbative algebraic quantum field theory} (\href{http://arxiv.org/abs/1110.5232}{arXiv:1110.5232}) \end{itemize} \hypertarget{other_2}{}\paragraph*{{Other}}\label{other_2} An interpretation of gauge anomalies as failures of [[Hamiltonian]]s to have [[self-adjoint extension]]s is in \begin{itemize}% \item J. G. Esteve, \emph{Origin of the anomalies: the modified Heisenberg equation} (\href{http://arxiv.org/abs/hep-th/0207164}{arXiv:hep-th/0207164}) \end{itemize} \hypertarget{in_finitedimensional_quantum_mechanics}{}\subsubsection*{{In finite-dimensional quantum mechanics}}\label{in_finitedimensional_quantum_mechanics} \begin{itemize}% \item A. P. Balachandran, Amilcar R. de Queiroz, \emph{Mixed states from anomalies}, \href{http://arxiv.org/abs/1108.3898}{arxiv/1108.3898} \item Carlos Alcalde, Daniel Sternheimer, \emph{Analytic vectors, anomalies and star representations}, Lett. Math. Phys. \textbf{17} (1989), no. 2, 117--127. \href{http://www.ams.org/mathscinet-getitem?mr=993017}{MR90h:22012}, \href{http://dx.doi.org/10.1007/BF00402326}{doi} (the last section has also the field theory case) \end{itemize} [[!redirects anomaly]] [[!redirects anomalies]] [[!redirects quantum anomalies]] [[!redirects gauge anomaly]] [[!redirects gauge anomalies]] [[!redirects quantum anomaly cancellation]] \end{document}