\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{quantum electrodynamics} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{algebraic_qunantum_field_theory}{}\paragraph*{{Algebraic Qunantum Field Theory}}\label{algebraic_qunantum_field_theory} [[!include AQFT and operator algebra contents]] \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{original_articles}{Original articles}\dotfill \pageref*{original_articles} \linebreak \noindent\hyperlink{review}{Review}\dotfill \pageref*{review} \linebreak \noindent\hyperlink{phenomenology}{Phenomenology}\dotfill \pageref*{phenomenology} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \emph{Quantum electrodynamics} (``QED'') is the [[perturbative quantum field theory]] of the [[electromagnetic field]] coupled to a [[Dirac field]] via the [[electron-photon interaction]]: it describes the [[quantum theory]] of [[photons]] and [[electrons]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} The [[Lagrangian density]] defining QED is the [[sum]] of \begin{enumerate}% \item the [[free field]] contribution of the [[electromagnetic field]]; \item the [[free field]] contribution of a [[Dirac field]]; \item the [[electron-photon interaction]] term with [[coupling constant]] given by the [[fine structure constant]]. \end{enumerate} See at \emph{[[A first idea of quantum field theory]]} \href{A+first+idea+of+quantum+field+theory#LagrangianQED}{this example}. The underlying [[free field theory]] admits a [[quantization]] via the corresponding [[Wick algebra]]. QED is, by definition, the [[perturbative quantum field theory]] obtained from this by finding a perturbative [[S-matrix]] for the [[electron-photon interaction]]. As a result, [[scattering amplitudes]] for [[electron-photon interactions]] in QED are then expressed in terms of [[Feynman amplitudes]]: [[!include Feynman diagrams in causal perturbation theory -- summary]] \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{itemize}% \item [[anomalous magnetic moment of the electron]] \item [[Lamb shift]] \item [[Casimir effect]] \item [[axial anomaly]] \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[fine structure constant]] \item [[photon propagator]] \item [[quantum field theory]] \begin{itemize}% \item [[scalar field]] \item [[gauge theory]] \begin{itemize}% \item \textbf{QED} \item [[QCD]], [[quantization of Yang-Mills theory]] \end{itemize} \end{itemize} \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{original_articles}{}\subsubsection*{{Original articles}}\label{original_articles} The term ``quantum electrodynamics'' is due to \begin{itemize}% \item [[Paul Dirac]], \emph{The quantum theory of emission and absorption of radiation}, Proc. Roy. Soc. London A 114, 243, 1927 (\href{http://inspirehep.net/record/42586?ln=en}{spire}, \href{http://wwwhome.lorentz.leidenuniv.nl/~boyarsky/media/Proc.R.Soc.Lond.-1927-Dirac-243-65.pdf}{pdf}) \end{itemize} This left some issues with the quantization of the radiation field. These were addressed, and the [[causal propagator]] for the [[electromagnetic field]] was first found in \begin{itemize}% \item [[Pascual Jordan]], [[Wolfgang Pauli]], \emph{Zur Quantenelektrodynamik ladungsfreier Felder}, Zeitschrift f\"u{}r Physik 47, 151 (1928) \end{itemize} A comprehensive, albeit informal, theory of QED and of [[perturbative quantum field theory]] in general was eventually developed by \begin{itemize}% \item [[Schwinger-Tomonaga-Feynman-Dyson]], 1940s \end{itemize} For more on the history see \begin{itemize}% \item [[Rudolf Haag]], \emph{Early papers on quantum field theory (1992-1930)} (\href{https://link.springer.com/content/pdf/bfm%3A978-3-642-70078-1%2F1%2F1.pdf}{pdf}) \end{itemize} and (\hyperlink{Scharf95}{Scharf 95, section 0.0}). Discussion of [[vacuum stability]] in [[QED]] includes \begin{itemize}% \item [[Günter Scharf]], \emph{Vacuum stability in quantum field theory}, Nuovo Cim. A109 (1996) 1605-1607 (\href{http://inspirehep.net/record/432208/}{spire:432208}) \item [[Hrvoje Nikolić]], \emph{Physical stability of the QED vacuum}, 2001 (\href{https://arxiv.org/abs/hep-ph/0105176}{arXiv:hep-ph/0105176}) \end{itemize} The rigorous construction of [[perturbative QFT|perturbative]] QED in [[causal perturbation theory]] is worked out in \begin{itemize}% \item \hyperlink{Scharf95}{Scharf 95} \end{itemize} and refined to [[perturbative AQFT]] in \begin{itemize}% \item [[Michael Dütsch]], [[Klaus Fredenhagen]], \emph{A local (perturbative) construction of observables in gauge theores: the example of QED} , Commun. Math. Phys. 203 (1999), no.1, 71-105, (\href{http://xxx.uni-augsburg.de/abs/hep-th/9807078}{arXiv:hep-th/9807078}). \end{itemize} and generalized to possibly non-abelian [[Yang-Mills theory]] in \begin{itemize}% \item [[Stefan Hollands]], \emph{Renormalized Quantum Yang-Mills Fields in Curved Spacetime}, Rev. Math. Phys. 20:1033-1172, 2008 (\href{https://arxiv.org/abs/0705.3340}{arXiv:0705.3340}) \end{itemize} The [[weak adiabatic limit]] of QED was established in \begin{itemize}% \item P. Blanchard and R. Seneor, \emph{Green’s functions for theories with massless particles (in perturbation theory)}, Ann. Inst. H. Poincaré Sec. A 23 (2), 147–209 (1975) (\href{http://www.numdam.org/item?id=AIHPA_1975__23_2_147_0}{Numdam}) \item [[Paweł Duch]], \emph{Massless fields and adiabatic limit in quantum field theory} (\href{https://arxiv.org/abs/1709.09907}{arXiv:1709.09907}) \end{itemize} The [[local net of algebras of observables]] and hence the [[algebraic adiabatic limit]] was worked out in \begin{itemize}% \item \hyperlink{DuetschFredenhagen98}{Dütsch-Fredenhagen 98} \end{itemize} Further discussion of the [[adiabatic limit]] and [[infrared divergences]] includes \begin{itemize}% \item Daniel Kapec, Malcolm Perry, Ana-Maria Raclariu, [[Andrew Strominger]], \emph{Infrared Divergences in QED, Revisited}, Phys. Rev. D 96, 085002 (2017) (\href{https://arxiv.org/abs/1705.04311}{arXiv:1705.04311}) \end{itemize} \hypertarget{review}{}\subsubsection*{{Review}}\label{review} Traditional discussion includes \begin{itemize}% \item [[Radovan Dermisek]], \emph{Quantum Electrodynamics (QED)} (\href{http://www.physics.indiana.edu/~dermisek/QFT_09/qft-II-5-4p.pdf}{pdf}, [[DermisekQED.pdf:file]]) \item [[Hitoshi Murayama]], \emph{Quantum Electrodynamics} (\href{http://hitoshi.berkeley.edu/221B-S02/QED.pdf}{pdf}) \item [[Eberhard Zeidler]], \emph{Quantum field theory II: Quantum electrodynamics -- A bridge between mathematicians and physicists}, Springer (2009) \item Einan Gardi, lectures 19, 20 of \emph{\href{https://www2.ph.ed.ac.uk/~egardi/MQFT/}{Modern Quantum Field Theory}}, 2015 (\href{https://www2.ph.ed.ac.uk/~egardi/MQFT/MQFT_2015_lecture_19_20.pdf}{pdf}) \end{itemize} Mathematically rigorous discussion in [[causal perturbation theory]]/[[perturbative AQFT]] is in \begin{itemize}% \item [[Günter Scharf]], \emph{[[Finite Quantum Electrodynamics -- The Causal Approach]]}, Berlin: Springer-Verlag, 1995, 2nd edition \item [[Michael Dütsch]], chapter 5 of \emph{[[From classical field theory to perturbative quantum field theory]]}, 2018 following (\hyperlink{DuetschFredenhagen98}{Dütsch-Fredenhagen 98}) \end{itemize} \hypertarget{phenomenology}{}\subsubsection*{{Phenomenology}}\label{phenomenology} Comparison to [[experiment]] is reviewed in \begin{itemize}% \item \emph{Tests of QED} (\href{http://edu.itp.phys.ethz.ch/hs10/ppp1/PPP1_6.pdf}{pdf}) \end{itemize} Specifically via the [[Lamb shift]]: \begin{itemize}% \item Savely G. Karshenboim, D. I. Mendeleev, \emph{The Lamb Shift of Hydrogen and Low-Energy Tests of QED} (\href{https://arxiv.org/abs/hep-ph/9411356}{arXiv:hep-ph/9411356}) \end{itemize} [[!redirects quantum electrodynamics]] [[!redirects quantum electro dynamics]] [[!redirects QED]] \end{document}