\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{quantum harmonic oscillator} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{classical_oscillator}{Classical oscillator}\dotfill \pageref*{classical_oscillator} \linebreak \noindent\hyperlink{quantum_harmonic_oscillator}{Quantum harmonic oscillator}\dotfill \pageref*{quantum_harmonic_oscillator} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{geometric_quantization}{Geometric quantization}\dotfill \pageref*{geometric_quantization} \linebreak \noindent\hyperlink{categorification}{Categorification}\dotfill \pageref*{categorification} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} ``Harmonic oscillator'' is a fancy name for a rock on a spring: \begin{itemize}% \item in [[classical mechanics]] it is the [[physical system]] given by a point mass in a parabolic potential, feeling [[forces]] driving it back to a specified origin that are propertional to the distance of the [[mass]] from that origin. \item in [[quantum mechanics]] and in particular [[quantum field theory]] the quantum harmonic oscillator governs not just the dynamics of idealized point masses but crucially appears in the dynamics of all free massive quantum fields. \end{itemize} To quote the field theorist Sidney Coleman, \begin{quote}% The career of a young theoretical physicist consists of treating the harmonic oscillator in ever-increasing levels of abstraction. \end{quote} \hypertarget{classical_oscillator}{}\subsection*{{Classical oscillator}}\label{classical_oscillator} First the harmonic oscillator in [[classical mechanics]]. The [[force]] exerted by a spring is proportional to how far you stretch it: \begin{displaymath} F = k x. \end{displaymath} The [[potential energy]] stored in a stretched spring is the integral of that: \begin{displaymath} V_0 = \frac{1}{2}k x^2 + C, \end{displaymath} and to make things work out nicely, we're going to choose $C = -1/2.$ The total [[energy]] $H_0$ is the sum of the potential and the kinetic energy: \begin{displaymath} H_0 = V_0 + T = \frac{1}{2}k x^2 + \frac{1}{2}m v^2 - \frac{1}{2}. \end{displaymath} By choosing units so that $k = m = 1,$ we get \begin{displaymath} H_0 = \frac{x^2}{2} + \frac{p^2}{2} - \frac{1}{2}, \end{displaymath} where $p$ is momentum. \hypertarget{quantum_harmonic_oscillator}{}\subsection*{{Quantum harmonic oscillator}}\label{quantum_harmonic_oscillator} Now the harmonic oscillator in [[quantum mechanics]]. We [[quantization|quantize]], getting a quantum harmonic oscillator, or QHO. We set $p = -i \frac{\partial}{\partial x},$ taking units where $\hbar = 1.$ Now \begin{displaymath} \itexarray{ [x, p]x^n & = & x p - p x \\ & = &(- x i \frac{\partial}{\partial x} + i \frac{\partial}{\partial x} x)x^n \\ & = & -i(n x^n - (n+1)x^n) \\ & = & i x^n. } \end{displaymath} If we define a new [[observable]] $z = \frac{p + ix}{\sqrt{2}},$ then \begin{displaymath} \itexarray{ z z^* & = & \frac{(p + i x)}{\sqrt{2}} \frac{(p - i x)}{\sqrt{2}} \\ & = & \frac{1}{2}(p^2 + i(x p - p x) + x^2) \\ & = & \frac{1}{2}(p^2 -1 + x^2) \\ & = & H_0. } \end{displaymath} We can think of $z^*$ as $\frac{d}{dz}$ and write the energy [[eigenvector]]s as [[polynomial]]s in $z:$ \begin{displaymath} H_0 z^n = z \frac{d}{dz} z^n = n z^n. \end{displaymath} The creation operator $z$ adds a photon to the mix; there's only one way to do that, so $z\cdot z^n = 1 z^{n+1}.$ The annihilation operator $\frac{d}{dz}$ destroys one of the photons; in the state $z^n$, there are $n$ [[photon]]s to choose from, so $\frac{d}{dz} z^n = n z^{n-1}.$ [[Schrodinger equation|Schrödinger's equation]] says $i \frac{d}{dt} \psi = H_0 \psi,$ so \begin{displaymath} \psi(t) = \sum_{n=0}^{\infty} e^{-itn} a_n z^n. \end{displaymath} This way of representing the state of a QHO is known as the \emph{Fock basis}. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[hydrogen atom]] \item [[quantum lattice system]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{geometric_quantization}{}\subsubsection*{{Geometric quantization}}\label{geometric_quantization} Discussion of [[geometric quantization]] of the harmonic oscillator is in \begin{itemize}% \item Adrian Lim, \emph{A non-standard geometric quantization of the harmonic oscillator} (\href{http://www.math.cornell.edu/~pclim/Docs/papers/oscillator6.pdf}{pdf}) \item G. Sherry, \emph{Geometric quantization of the 3-dimensional harmonic oscillator}, Quaestiones Mathematicae, 8 (1986) \item Sergey V. Zuev, \emph{Geometric quantization of generalized oscillator} (\href{http://arxiv.org/abs/math-ph/9902024}{arXiv:math-ph/9902024}) \end{itemize} \hypertarget{categorification}{}\subsubsection*{{Categorification}}\label{categorification} A program initiated by [[John Baez]] aims to identify a [[categorification]] of sorts of the quantum harmonic oscillator The notes \begin{itemize}% \item [[John Baez]]`s \href{http://math.ucr.edu/home/baez/qg-fall2003/}{Fall `03} Quantum gravity seminar \end{itemize} relate wavefunctions expressed in the Fock basis to [[structure types]]. This originates in \begin{itemize}% \item [[John Baez]], [[James Dolan]], \emph{From finite sets to Feynman diagrams} (\href{http://arxiv.org/abs/math/0004133}{arXiv}). \end{itemize} For more along these lines see \begin{itemize}% \item [[Jeffrey Morton]], \emph{Categorified Algebra and Quantum Mechanics} (\href{http://arxiv.org/abs/math/0601458}{arXiv}) \end{itemize} [[!redirects quantum harmonic oscillators]] [[!redirects harmonic oscillator]] [[!redirects harmonic oscillators]] \end{document}