\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{quantum master equation} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{algebraic_quantum_field_theory}{}\paragraph*{{Algebraic Quantum Field Theory}}\label{algebraic_quantum_field_theory} [[!include AQFT and operator algebra contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{in_causal_perturbation_theory}{In causal perturbation theory}\dotfill \pageref*{in_causal_perturbation_theory} \linebreak \noindent\hyperlink{background}{Background}\dotfill \pageref*{background} \linebreak \noindent\hyperlink{interacting_quantum_bvdifferential}{Interacting quantum BV-differential}\dotfill \pageref*{interacting_quantum_bvdifferential} \linebreak \noindent\hyperlink{RenormalizationAndMasterWardIdentity}{Renormalization and Master ward identity}\dotfill \pageref*{RenormalizationAndMasterWardIdentity} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In [[perturbative quantum field theory]] formulated in terms of [[BV-BRST formalism]], the \emph{classical master equation} expresses the nilpotency of the [[BV-differential]] before [[quantization]], with the latter regarded as a [[Hamiltonian vector field]] with respect to the \emph{[[antibracket]]} $\{-,-\}$, for ``Hamiltonian'' the BV-BRST-extended [[action functional]] ``S + S\_\{BRST\}'': \begin{displaymath} \left( s_{BV} \right)^2 = 0 \phantom{AA} \Leftrightarrow \phantom{AA} \left( \{S + S_{BRST},(-)\}\right)^2 = 0 \phantom{AA} \Leftrightarrow \phantom{AA} \{S + S_{BRST}, S + BRST\} = 0 \,. \end{displaymath} The \emph{quantum master equation} (prop. \ref{QuantumMasterEquation} below) is the version of this equation after [[quantization]], in which case the the [[BV-differential]] picks up a quantum correction of order $\hbar$ ([[Planck's constant]]) by the [[BV-operator]] $\Delta_{BV}$: \begin{displaymath} \left(\, \{S + S_{BRST},(-)\} + i \hbar \Delta_{BV} \, \right)^2 = 0 \,. \end{displaymath} \hypertarget{in_causal_perturbation_theory}{}\subsection*{{In causal perturbation theory}}\label{in_causal_perturbation_theory} We discuss the quantum master equation in the rigorous formulation of [[relativistic field theory|relativistic]] [[perturbative quantum field theory]] via [[causal perturbation theory]]/[[perturbative AQFT]] (\hyperlink{FredenhagenRejzner11b}{Fredenhagen-Rejzner 11b}, \hyperlink{Rejzner11}{Rejzner 11}). First we consider all structure just on [[regular polynomial observables]], hence excluding non-linear [[local observables]] such as the usual point-[[interaction]] [[action functionals]]. Then the [[extension]] of all structures from regular to [[local observables]] is the [[renormalization]] step, discussed \hyperlink{RenormalizationAndMasterWardIdentity}{furthter below}. \hypertarget{background}{}\subsubsection*{{Background}}\label{background} Throughout, let $(E_{\text{BV-BST}},\mathbf{L}')$ be a [[gauge fixing|gauge fixed]] [[free field theory|free]] [[Lagrangian field theory]] with global [[BV-differential]] (\href{A+first+idea+of+quantum+field+theory#ComplexBVBRSTGlobal}{this def.}) \begin{displaymath} \{-S', -\} \;\colon\; PolyObs(E_{\text{BV-BRST}})_{reg}[ [\hbar] ] \longrightarrow PolyObs(E_{\text{BV-BRST}})_{reg}[ [\hbar] ] \end{displaymath} Hence $S'$ denotes the gauge fixed free action functional. Moreover, let $\Delta_H$ be a compatible choice of [[Wightman propagator]] with associated [[Feynman propagator]] $\Delta_F$. \begin{lemma} \label{DerivationBVDifferentialForWickAlgebra}\hypertarget{DerivationBVDifferentialForWickAlgebra}{} \textbf{(global [[BV-differential]] is [[derivation]] on [[Wick algebra]])} The global [[BV-differential]] \begin{displaymath} \{-S',-\} \;\colon\; PolyObs(E_{\text{BV-BRST}})_{reg}[ [\hbar] ] \longrightarrow PolyObs(E_{\text{BV-BRST}})_{reg}[ [\hbar] ] \end{displaymath} is a [[derivation]] also with respect to the [[Wick algebra]] [[star product]] $\star_H$: \begin{displaymath} \left\{ -S', A_1 \star_H A_2 \right\} \;=\; \left\{ -S', A_1 \right\} \star_H A_2 \;+\; A_1 \star_H \left\{ -S', A_2 \right\} \,. \end{displaymath} \end{lemma} (\hyperlink{FredenhagenRejzner11b}{Fredenhagen-Rejzner 11b, below (37)}, \hyperlink{Rejzner11}{Rejzner 11, below (5.28)}) For \textbf{proof} see \href{A+first+idea+of+quantum+field+theory#OnMicrocausalObservablesGlobalBVDifferential}{this prop} \begin{defn} \label{OnRegularObservablesPerturbativeSMatrix}\hypertarget{OnRegularObservablesPerturbativeSMatrix}{} \textbf{([[perturbative S-matrix]] on [[regular polynomial observables]])} The \emph{[[perturbative S-matrix]]} on [[regular polynomial observables]] is the [[exponential]] with respect to the [[time-ordered product]] \begin{displaymath} \mathcal{S} \;\colon\; PolyObs(E_{\text{BV-BRST}})_{reg}[ [\hbar] ] \longrightarrow PolyObs(E_{\text{BV-BRST}})_{reg}((\hbar)) \end{displaymath} given by \begin{displaymath} \mathcal{S}(S_{int}) = \exp_{\star_F} \left( \tfrac{1}{i \hbar} S_{int}) \right) \coloneqq 1 + \tfrac{1}{\i \hbar} S_{int} + \tfrac{1}{2} \tfrac{1}{(i \hbar)^2} S_{int} \star_F S_{int} + \cdots \,. \end{displaymath} We think of $S_{int}$ here as an [[adiabatic switching|adiabatically switched]] non-point-[[interaction]] [[action functional]]. We write $\mathcal{S}(S_{int})^{-1}$ for the [[inverse]] with respect to the [[Wick algebra|Wick product]] (which exists by \href{S-matrix#PerturbativeSMatrixInverse}{this remark}) \begin{displaymath} \mathcal{S}(S_{int})^{-1} \star_H \mathcal{S}(S_{int}) = 1 \,. \end{displaymath} Notice that this is in general different form the inverse with respect to the [[time-ordered product]] $\star_F$, which is $\mathcal{S}(-S_{int})$: \begin{displaymath} \mathcal{S}(-S_{int}) \star_F \mathcal{S}(S_{int}) = 1 \,. \end{displaymath} \end{defn} \begin{defn} \label{MollerOperatorOnRegularPolynomialObservables}\hypertarget{MollerOperatorOnRegularPolynomialObservables}{} \textbf{([[quantum Møller operator]] on [[regular polynomial observables]])} Given an [[adiabatic switching|adiabatically switched]] non-point-[[interaction]] [[action functional]] in the form of a [[regular polynomial observable]] of degree 0 \begin{displaymath} S_{int} \;\in\; PolyObs(E_{\text{BV-BRST}})_{{reg} \atop {deg = 0}}[ [\hbar] ] \end{displaymath} then the corresponding \emph{[[quantum Møller operator]]} on [[regular polynomial observables]] \begin{displaymath} \mathcal{R}^{-1} \;\colon\; PolyObs(E_{\text{BV-BRST}})_{reg}[ [\hbar] ] \longrightarrow PolyObs(E_{\text{BV-BRST}})_{reg}[ [\hbar] ] \end{displaymath} is given by the [[derivative]] of [[Bogoliubov's formula]] \begin{displaymath} \mathcal{R}^{-1} \;\coloneqq\; \mathcal{S}(S_{int})^{-1} \star_H (\mathcal{S}(S_{int}) \star_F (-)) \,, \end{displaymath} where $\mathcal{S}(S_{int}) = \exp_{\mathcal{T}}\left( \tfrac{-1}{i \hbar} S_{int} \right)$ is the [[perturbative S-matrix]] from def. \ref{OnRegularObservablesPerturbativeSMatrix}. This indeed lands in [[formal power series]] in [[Planck's constant]] $\hbar$ (by \href{Bogoliubov's+formula#PowersInPlancksConstant}{this remark}), instead of in more general [[Laurent series]] as the [[perturbative S-matrix]] does (def. \ref{OnRegularObservablesPerturbativeSMatrix}). Hence the inverse map is \begin{displaymath} \mathcal{R} \;=\; \mathcal{S}(-S_{int}) \star_F ( \mathcal{S}(S_{int}) \star(-) ) \,. \end{displaymath} \end{defn} (\href{Bogoliubov's+formula#BogoliubovShirkov59}{Bogoliubov-Shirkov 59}; the above terminology follows \href{Møller+operator#HawkinsRejzner16}{Hawkins-Rejzner 16, below def. 5.1}) Notice that compared to Fredenhagen-Rejzner et. al. we have changed notation conventions $\mathcal{R} \leftrightarrow \mathcal{R}^{-1}$ in order to bring out the analogy to (the conventions for the) [[time-ordered product]] $A_1 \star_F A_2 = \mathcal{T}(\mathcal{T}^{-1}(A_1) \cdot \mathcal{T}^{-1}(A_2))$ on regular polynomial observables. notice the implicit dependencies \newline | $\phantom{AA}\mathcal{S}$ | [[S-matrix]] | [[free field theory|free]] [[Lagrangian density]] and [[Wightman propagator]] | | $\phantom{AA}\mathcal{R}$ | [[quantum Møller operator]] | [[free field theory|free]] [[Lagrangian density]] and [[Wightman propagator]] and [[interaction]] | \begin{defn} \label{FieldAlgebraObservablesInteracting}\hypertarget{FieldAlgebraObservablesInteracting}{} \textbf{([[interacting field algebra]])} Given an [[adiabatic switching|adiabatically switched]] non-point-[[interaction]] [[action functional]] in the form of a [[regular polynomial observable]] in degree 0 \begin{displaymath} S_{int} \;\in\; PolyObs(E_{\text{BV-BRST}})_{{reg} \atop {deg = 0}}[ [\hbar] ] \,, \end{displaymath} then the \emph{[[interacting field algebra]]} [[structure]] on [[regular polynomial observables]] \begin{displaymath} PolyObs(E_{\text{BV-BRST}})_{reg}[ [\hbar] ] \otimes PolyObs(E_{\text{BV-BRST}})_{reg}[ [\hbar] ] \overset{ \star_{int} }{\longrightarrow} PolyObs(E_{\text{BV-BRST}})_{reg}[ [\hbar] ] \end{displaymath} is the [[conjugation]] of the [[Wick algebra]]-[[structure]] by the [[quantum Møller operator]] (def. \ref{MollerOperatorOnRegularPolynomialObservables}): \begin{displaymath} A_1 \star_{int} A_2 \;\coloneqq\; \mathcal{R} \left( \mathcal{R}^{-1}(A_1) \star_H \mathcal{R}^{-1}(A_2) \right) \end{displaymath} \end{defn} (e.g. \hyperlink{FredenhagenRejzner11b}{Fredenhagen-Rejzner 11b, (19)}) \hypertarget{interacting_quantum_bvdifferential}{}\subsubsection*{{Interacting quantum BV-differential}}\label{interacting_quantum_bvdifferential} Recall how the global BV-differential \begin{displaymath} \{S',-\} \;\colon\; PolyObs(E_{\text{BV-BRST}})_{reg}[ [\hbar] ] \longrightarrow PolyObs(E_{\text{BV-BRST}})_{reg}[ [\hbar] ] \end{displaymath} on [[regular polynomial observables]] (\href{A+first+idea+of+quantum+field+theory#BVDifferentialGlobal}{this def.}) is conjugated into the [[time-ordered product]] via the time ordering operator $\mathcal{T} \circ \{-S',-\} \circ \mathcal{T}^{-}$ (\href{BV-operator#GaugeFixedActionFunctionalTimeOrderedAntibracket}{this prop.}). In the same way we may use the [[quantum Møller operators]] to conjugate the BV-differential into the regular part of the [[interacting field algebra of observables]]: \begin{defn} \label{BVDifferentialInteractingQuantum}\hypertarget{BVDifferentialInteractingQuantum}{} \textbf{(interacting quantum [[BV-differential]])} Given an [[adiabatic switching|adiabatically switched]] non-point-[[interaction]] [[action functional]] in the form of a [[regular polynomial observable]] $S_{int}$, then the \emph{interacting quantum BV-differential} on the [[interacting field algebra]] (def. \ref{FieldAlgebraObservablesInteracting}) on [[regular polynomial observables]] is the [[conjugation]] of the plain [[BV-differential]] $\{-S',-\}$ by the [[quantum Møller operator]] induced by $S_{int}$ (def. \ref{MollerOperatorOnRegularPolynomialObservables}): \begin{displaymath} \mathcal{R} \circ \{-S', (-)\} \circ \mathcal{R}^{-1} \;\colon\; PolyObs(E_{\text{BV-BRST}})_{reg}[ [\hbar] ] \longrightarrow PolyObs(E_{\text{BV-BRST}})_{reg}[ [\hbar] ] \,. \end{displaymath} \end{defn} (\hyperlink{Rejzner11}{Rejzner 11, (5.38)}) \begin{prop} \label{QuantumMasterEquation}\hypertarget{QuantumMasterEquation}{} \textbf{([[quantum master equation]] and [[quantum master Ward identity]] on [[regular polynomial observables]])} Consider an [[adiabatic switching|adiabatically switched]] non-point-[[interaction]] [[action functional]] in the form of a [[regular polynomial observable]] in degree 0 \begin{displaymath} S_{int} \;\in\; PolyObs(E_{\text{BV-BRST}})_{{reg} \atop {deg = 0}}[ [\hbar] ] \,, \end{displaymath} Then the following are equivalent: \begin{enumerate}% \item The \emph{[[quantum master equation]]} (QME) \begin{equation} \tfrac{1}{2} \{ S' + S_{int}, S' + S_{int} \}_{\mathcal{T}} + i \hbar \Delta_{BV}( S' + S_{int} ) \;=\; 0 \,. \label{OnRegularObservablesQuantumMasterEquation}\end{equation} \item The [[perturbative S-matrix]] (def. \ref{OnRegularObservablesPerturbativeSMatrix}) is $BV$-closed \begin{displaymath} \{-S', \mathcal{S}(S_{int})\} = 0 \,. \end{displaymath} \item The quantum \emph{[[master Ward identity]]} (MWI) on [[regular polynomial observables]] \emph{in terms of [[retarded products]]}: \begin{equation} \mathcal{R} \circ \{-S',(-)\} \circ \mathcal{R}^{-1} \;=\; \left\{ -(S' + S_{int}) \,,\, (-) \right\}_{\mathcal{T}} - i \hbar \Delta_{BV} \label{OnRegularObservablesQuantumMasterWardIdentity}\end{equation} (\href{Ward+identity#Duetsch18}{Dütsch 18, (4.2)}) expressing the interacting quantum [[BV-differential]] (def. \ref{BVDifferentialInteractingQuantum}) as the sum of the [[time-ordered product|time-ordered]] [[antibracket]] (\href{BV-operator#AntibracketTimeOrdered}{this def.}) with the \emph{total} [[action functional]] $S' + S_{int}$ and $i \hbar$ times the [[BV-operator]] (\href{BV-operator#ForGaugeFixedFreeLagrangianFieldTheoryBVOperator}{BV-operator}). \item The quantum \emph{[[master Ward identity]]} (MWI) on [[regular polynomial observables]] \emph{in terms of [[time-ordered products]]}: \begin{equation} \mathcal{S}(-S_{int}) \star_F \{-S', \mathcal{S}(S_{int}) \star_F (-)\} \;=\; - \left( \left\{ S' + S_{int} \,,\, (-) \right\}_{\mathcal{T}} + i \hbar \Delta_{BV} \right) \label{OnRegularObservablesQuantumMasterWardIdentityViaTimeOrdered}\end{equation} (\href{Ward+identity#Duetsch18}{Dütsch 18, (4.8)}) \end{enumerate} \end{prop} (\hyperlink{Rejzner11}{Rejzner 11, (5.35) - (5.38)}, following \href{Ward+identity#Hollands07}{Hollands 07, (342)-(345)}) \begin{proof} To see that the first two conditions are equivalent, we compute as follows \begin{equation} \begin{aligned} \left\{ -S', \mathcal{S}(S_{int}) \right\} & = \left\{ -S' , \exp_{\mathcal{T}} \left( \tfrac{1}{i \hbar} S_{int} \right) \right\} \\ & = \underset{ { \tfrac{-1}{i \hbar} \{S',S\}_{\mathcal{T}} } \atop { \star_F \exp_{\mathcal{T}} \left( \tfrac{1}{i \hbar} S_{int} \right) } }{ \underbrace{ \left\{ -S' , \exp_{\mathcal{T}} \left( \tfrac{1}{i \hbar} S_{int} \right) \right\}_{\mathcal{T}} } } - i \hbar \underset{ { \left( \tfrac{1}{i \hbar} \Delta_{BV}(S_{int}) + \tfrac{1}{2 (i \hbar)^2} \left\{ S_{int}, S_{int} \right\}_{\mathcal{T}} \right) } \atop { \star_{F} \exp_{\mathcal{T}} \left( \tfrac{1}{i \hbar} S_{int} \right) } }{ \underbrace{ \Delta_{BV} \left( \exp_{\mathcal{T}} \left( \tfrac{1}{i \hbar} S_{int} \right) \right) } } \\ & = \tfrac{-1}{i \hbar} \underset{ \text{QME} }{ \underbrace{ \left( \{S',S_{int}\} + \tfrac{1}{2}\{S_{int}, S_{int}\} + i \hbar \Delta_{BV}(S_{int}) \right) } } \star_F \exp_{\mathcal{T}} \left( \tfrac{1}{i \hbar} S_{int} \right) \end{aligned} \label{QuantumMasterOnRegularObservablesBVDifferentialOfSMatrixInTerms}\end{equation} Here in the first step we used the definition of the [[BV-operator]] (\href{ForGaugeFixedFreeLagrangianFieldTheoryBVOperator}{this def.}) to rewrite the plain antibracket in terms of the time-ordered antibracket (\href{BV-operator#AntibracketTimeOrdered}{this def.}), then under the second brace we used that the time-ordered antibracket is the failure of the BV-operator to be a derivation (\href{BV-operator#AntibracketBVOperatorRelation}{this prop}) and under the first brace the consequence of this statement for application to exponentials (\href{BV-operator#TimeOrderedExponentialBVOperator}{this example}). Finally we collected terms, and to ``complete the square'' we added the terms on the left of \begin{displaymath} \frac{1}{2} \underset{= 0}{\underbrace{\{S', S'\}_{\mathcal{T}}}} - i \hbar \underset{ = 0}{\underbrace{ \Delta_{BV}(S')}} = 0 \end{displaymath} which vanish because, by definition of [[gauge fixing]] (\href{A+first+idea+of+quantum+field+theory#GaugeFixingLagrangianDensity}{this def.}), the free gauge-fixed action functional $S'$ is independent of [[antifields]]. But since the operation $(-) \star_F \exp_{\mathcal{T}}\left( \tfrac{1}{i \hbar} S_{int} \right)$ has the [[inverse]] $(-) \star_F \exp_{\mathcal{T}}\left( \tfrac{-1}{i \hbar} S_{int} \right)$, this implies the claim. Next we show that the [[quantum master equation]] implies the [[quantum master Ward identities]]. We use that the BV-differential $\{-S',-\}$ is a [[derivation]] of the [[Wick algebra]] product $\star_H$ (lemma \ref{DerivationBVDifferentialForWickAlgebra}). First of all this implies that with $\{-S', \mathcal{S}(S_{int})\} = 0$ also $\{-S', \mathcal{S}(S_{int})^{-1}\} = 0$. Thus we compute as follows: \begin{displaymath} \begin{aligned} \{-S', -\} \circ \mathcal{R}^{-1}(A) & = \{-S', \mathcal{R}^{-1}(A)\} \\ & = \left\{ { \, \atop \, } -S', \mathcal{S}(S_{int})^{-1} \star_H \left( \mathcal{S}(S_{int}) \star_F a \right) {\, \atop \,} \right\} \\ & = \phantom{+} \underset{ = 0 }{ \underbrace{ \left\{ -S', \mathcal{S}(S_{int})^{-1} \right\} } } \star_H \left( \mathcal{S}(S_{int}) \star_F A \right) \\ & \phantom{=} + \mathcal{S}(S_{int})^{-1} \star_H \left\{ -S', \mathcal{S}(S_{int}) \star_F A \right\} \\ & = \mathcal{S}(S_{int})^{-1} \star_H \left( \underset{ = 1 }{ \underbrace{ \mathcal{S}(+ S_{int}) \star_F \mathcal{S}(- S_{int}) } } \star_F \left\{ -S', \mathcal{S}(S_{int}) \star_F A \right\} \right) \\ & = \mathcal{S}(S_{int})^{-1} \star_H \left( \mathcal{S}(+ S_{int}) \star_F \underset{ (\ast) }{ \underbrace{ \mathcal{S}(- S_{int}) \star_F \left\{ -S', \mathcal{S}(S_{int}) \star_F A \right\} } } \right) \\ & = \mathcal{R}^{-1} \left( \underset{ (\ast) }{ \underbrace{ \phantom{\, \atop \,} \mathcal{S}(-S_{int}) \star_F \left\{ -S', \mathcal{S}(S_{int}) \star_F A \right\} } } \right) \end{aligned} \end{displaymath} By applying $\mathcal{R}$ to both sides of this equation, this means first of all that the interacting quantum BV-differential is equivalently given by \begin{displaymath} \mathcal{R} \circ \{-S', (-)\} \circ \mathcal{R}^{-1} \;=\; \mathcal{S}(-S_{int}) \star_F \{-S', \mathcal{S}(S_{int}) \star_F (-)\} \,, \end{displaymath} hence that if either version \eqref{OnRegularObservablesQuantumMasterWardIdentity} or \eqref{OnRegularObservablesQuantumMasterWardIdentityViaTimeOrdered} of the [[master Ward identity]] holds, it implies the other. Now expanding out the definition of $\mathcal{S}$ (def. \ref{OnRegularObservablesPerturbativeSMatrix}) and expressing $\{-S',-\}$ via the [[time-ordered product|time-ordered]] [[antibracket]] (\href{BV-operator#AntibracketTimeOrdered}{this def.}) and the [[BV-operator]] $\Delta_{BV}$ (\href{BV-operator#ForGaugeFixedFreeLagrangianFieldTheoryBVOperator}{this prop.}) as \begin{displaymath} \{-S',-\} \;=\; \{-S',-\}_{\mathcal{T}} - i \hbar \Delta_{BV} \end{displaymath} (on [[regular polynomial observables]]), we continue computing as follows: \begin{equation} \begin{aligned} & \mathcal{R} \circ \{-S', (-)\} \circ \mathcal{R}^{-1}( A ) \\ & = \exp_{\mathcal{T}} \left( \tfrac{-1}{i \hbar} S_{int} \right) \star_F \left\{ -S', \exp_{\mathcal{T}} \left( \tfrac{1}{i \hbar} S_{int} \right) \star_F A \right\} \\ & = \exp_{\mathcal{T}} \left( \tfrac{-1}{i \hbar} S_{int} \right) \star_F \left( \left\{ -S', \exp_{\mathcal{T}} \left( \tfrac{ 1 }{i \hbar} S_{int} \right) \star_F A \right\}_{\mathcal{T}} - i \hbar \Delta_{BV} \left( \exp_{\mathcal{T}} \left( \tfrac{ 1 }{i \hbar} S_{int} \right) \star_F A \right) \right) \\ & \phantom{+} = \tfrac{1}{i \hbar} \{ -S', S_{int} \}_{\mathcal{T}} \star_F A + \{-S', A\}_{\mathcal{T}} \\ & \phantom{=} - i \hbar \exp_{\mathcal{T}}\left( \tfrac{-1}{i \hbar} S_{int}\right) \star_F \left( \underset{ { \left( \tfrac{1}{i \hbar}\Delta_{BV}(S_{int}) + \tfrac{1}{2 (i \hbar)^2} \left\{ S_{int}, S_{int} \right\} \right) } \atop { \star_F \exp_{\mathcal{T}}\left( \tfrac{ 1 }{i \hbar} S_{int} \right) } }{ \underbrace{ \Delta_{BV} \left( \exp_{\mathcal{T}} \left( \tfrac{ 1}{i \hbar} S_{int} \right) \right) } } \star_F A \,+\, \exp_{\mathcal{T}} \left( \tfrac{ 1}{i \hbar} S_{int} \right) \star_F \Delta_{BV}(A) \,+\, \underset{ { \exp_{\mathcal{T}}\left( \tfrac{1}{i \hbar} S_{int} \right) } \atop { \star_F \tfrac{ 1}{i \hbar} \{S_{int}, A\} } }{ \underbrace{ \left\{ \exp_{\mathcal{T}} \left( \tfrac{ 1}{i \hbar} S_{int} \right) \,,\, A \right\}_{\mathcal{T}} } } \right) \\ & = - \left( \{ S' + S_{int}\,,\, A\}_{\mathcal{T}} + i \hbar \Delta_{BV}(A) \right) \\ & \phantom{=} - \tfrac{1}{i \hbar} \underset{ \text{QME} }{ \underbrace{ \left( \tfrac{1}{2} \{ S' + S_{int}, S' + S_{int} \}_{\mathcal{T}} + i \hbar \Delta_{BV}( S' + S_{int} ) \right) }} \star_F A \\ & = - \left( \{ S' + S_{int}\,,\, A\}_{\mathcal{T}} + i \hbar \Delta_{BV}(A) \right) \end{aligned} \label{QMESecondStep}\end{equation} Here in the line with the braces we used that the [[BV-operator]] is a [[derivation]] of the [[time-ordered product]] up to correction by the time-ordered [[antibracket]] (\href{BV-operator#AntibracketBVOperatorRelation}{this prop.}), and under the first brace we used the effect of that property on time-ordered exponentials (\href{BV-operator#TimeOrderedExponentialBVOperator}{this example}), while under the second brace we used that $\{(-),A\}_{\mathcal{T}}$ is a derivation of the time-ordered product. Finally we have collected terms, added $0 = \{S',S'\} + i \hbar \Delta_{BV}(S')$ as before, and then used the QME. This shows that the quantum [[master Ward identities]] follow from the [[quantum master equation]]. To conclude, it is now sufficient to show that, conversely, the MWI in terms of, say, retarded products implies the QME. To see this, observe that with the BV-differential being nilpotent, also its conjugation by $\mathcal{R}$ is, so that with the above we have: \begin{displaymath} \begin{aligned} & \left( \{-S',-\}\right)^2 = 0 \\ \Leftrightarrow \; & \left( \mathcal{R} \circ \{-S',(-)\} \circ \mathcal{R}^{-1} \right)^2 = 0 \\ \Leftrightarrow \; & \underset{ \left\{ {\, \atop \,} \tfrac{1}{2}\{S' + S_{int}, S' + S_{int}\}_{\mathcal{T}} + i \hbar \Delta_{BV}(S' + S_{int}) \,,\, (-) \right\} }{ \underbrace{ \left( \{S' + S_{int}, (-)\}_{\mathcal{T}} + i \hbar \Delta_{BV} \right)^2 } } = 0 \end{aligned} \end{displaymath} Here under the brace we computed as follows: \begin{displaymath} \begin{aligned} \left( \{S' + S_{int}, (-)\}_{\mathcal{T}} + i \hbar \Delta_{BV} \right)^2 & = \phantom{+} \underset{ \tfrac{1}{2} \{ \{S' + S, S'+ S\}_{\mathcal{T}}, (-) \}_{\mathcal{T}} }{ \underbrace{ \{S' + S_{int}, \{S' + S_{int}\}_{\mathcal{T}}, (-) \}_{\mathcal{T}} }} \\ & \phantom{=} + i \hbar \underset{ \{ \Delta_{BV}(S'+ S)\,,\, (-) \}_{\mathcal{T}} }{ \underbrace{ \left( \{S' + S_{int}, (-)\}_{\mathcal{T}} \circ \Delta_{BV} + \Delta_{BV} \circ \{S' + S_{int}, (-)\}_{\mathcal{T}} \right) }} \\ & \phantom{=} + (i \hbar)^2 \underset{= 0} { \underbrace{ \Delta_{BV} \circ \Delta_{BV} } } \end{aligned} \,. \end{displaymath} where, in turn, the term under the first brace follows by the graded [[Jacobi identity]], the one under the second brace by Henneaux-Teitelboim (15.105c) and the one under the third brace by Henneaux-Teitelboim (15.105b). \end{proof} \begin{example} \label{MasterWardIdentityClassical}\hypertarget{MasterWardIdentityClassical}{} \textbf{([[classical master Ward identity]])} The [[classical limit]] $\hbar \to 0$ of the [[quantum master Ward identity]] \eqref{OnRegularObservablesQuantumMasterWardIdentity} is \begin{displaymath} \{-S',(-)\} \circ \mathcal{R}^{-1} \;=\; - \mathcal{R}^{-1} \left( \left\{ S' + S_{int} \,,\, (-) \right\} \right) \,. \end{displaymath} Applied to an observable which is linear in the [[antifields]] \begin{displaymath} A \;=\; \underset{\Sigma}{\int} A^a(x) \mathbf{\Phi}^\ddagger_a(x) \, dvol_\Sigma(x) \end{displaymath} this becomes \begin{displaymath} \begin{aligned} 0 & = \{-S', \mathcal{R}^{-1}(A)\} + \mathcal{R}^{-1} \left( \left\{ S' + S_{int} \,,\, A \right\}_{\mathcal{T}} \right) \\ & = \underset{\Sigma}{\int} \frac{\delta S'}{\delta \mathbf{\Phi}^a(x)} \mathcal{R}^{-1}(A^a(x)) \, dvol_\Sigma(x) + \mathcal{R}^{-1} \left( \underset{\Sigma}{\int} A^a(x) \frac{\delta (S' + S_{int})}{\delta \mathbf{\Phi}^a(x)} \, dvol_\Sigma(x) \right) \end{aligned} \end{displaymath} In this form the \emph{classical Master Ward identity} was originally identified in (\href{master+Ward+identity#DuetschFredenhagen02}{Dütsch-Fredenhagen 02, (90)}, \href{master+Ward+identity#BrennecketDuetsch07}{Brennecke-Dütsch 07, (5.5)}, following \href{master+Ward+identity#DuetschBoas02}{Dütsch-Boas 02}). \end{example} \hypertarget{RenormalizationAndMasterWardIdentity}{}\subsubsection*{{Renormalization and Master ward identity}}\label{RenormalizationAndMasterWardIdentity} The quantum master equation in the form of prop. \ref{QuantumMasterEquation} is derived on [[regular polynomial observables]], in particular hence for non-point-[[interaction]] [[action functionals]] $S_{int}$. But the [[interaction]] terms of interest are point-interactions, hence are [[local observables]]. The [[extension]] of the [[time-ordered product]] and hence of the [[perturbative S-matrix]] from regular to local onservables exsists but involves choices, these are the \emph{[[renormalization]]} choices in the formulation of [[causal perturbation theory]]. Since for [[gauge fixing|gauged fixed]] [[gauge theories]] this physically relevant [[observables]] are not the plain ([[microcausal polynomial observables|mcirocausal]]) [[polynomial observables]], but the [[cochain cohomology]] of the [[BV-BRST differential]] on them, one needs to require for gauge theories that the [[quantum master equation]] still holds after [[renormalization]]. This is closely related to the [[renormalization condition]] called the \emph{[[master Ward identity]]} (\hyperlink{Rejzner11}{Rejzner 11 (prop. 5.3.1) and following paragraphs}). If the quantum master equation cannot be retained in [[renormalization]] one says that the field theory suffers from a \emph{[[quantum anomaly]]}. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[master Ward identity]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The concept originates with \begin{itemize}% \item [[Igor Batalin]], [[Grigori Vilkovisky]], \emph{Gauge Algebra and Quantization}, Phys. Lett. B 102 (1): 27--31, 1981 () \end{itemize} Traditional review includes \begin{itemize}% \item [[Marc Henneaux]], [[Claudio Teitelboim]], section 15.5.3 of \emph{[[Quantization of Gauge Systems]]}, Princeton University Press, 1992 \end{itemize} Discussion in the rigorous context of [[relativistic field theory|relativistic]] [[perturbative QFT]] formulated in [[causal perturbation theory]]/[[perturbative AQFT]] is in: \begin{itemize}% \item [[Klaus Fredenhagen]], [[Kasia Rejzner]], \emph{Batalin-Vilkovisky formalism in the functional approach to classical field theory}, Commun. Math. Phys. 314(1), 93--127 (2012) (\href{https://arxiv.org/abs/1101.5112}{arXiv:1101.5112}) \item [[Klaus Fredenhagen]], [[Kasia Rejzner]], \emph{Batalin-Vilkovisky formalism in perturbative algebraic quantum field theory}, Commun. Math. Phys. 317(3), 697--725 (2012) (\href{https://arxiv.org/abs/1110.5232}{arXiv:1110.5232}) \item [[Katarzyna Rejzner]], \emph{Batalin-Vilkovisky formalism in locally covariant field theory} (\href{https://arxiv.org/abs/1111.5130}{arXiv:1111.5130}) \item [[Katarzyna Rejzner]], \emph{Remarks on local symmetry invariance in perturbative algebraic quantum field theory} (\href{https://arxiv.org/abs/1301.7037}{arXiv:1301.7037}) \end{itemize} and surveyed in \begin{itemize}% \item [[Kasia Rejzner]], section 7 of \emph{Perturbative algebraic quantum field theory} Springer 2016 (\href{https://link.springer.com/book/10.1007%2F978-3-319-25901-7}{web}) \end{itemize} [[!redirects classical master equation]] \end{document}