\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{quantum observable} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{algebraic_quantum_field_theory}{}\paragraph*{{Algebraic Quantum Field Theory}}\label{algebraic_quantum_field_theory} [[!include AQFT and operator algebra contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition_in_geometric_quantization}{Definition in geometric quantization}\dotfill \pageref*{definition_in_geometric_quantization} \linebreak \noindent\hyperlink{OnASymplecticManifold}{On a symplectic manifold}\dotfill \pageref*{OnASymplecticManifold} \linebreak \noindent\hyperlink{on_an_plectic_smooth_groupoid}{On an $n$-plectic smooth $\infty$-groupoid}\dotfill \pageref*{on_an_plectic_smooth_groupoid} \linebreak \noindent\hyperlink{irreducible_representations_and_superselection_sectors}{Irreducible representations and superselection sectors}\dotfill \pageref*{irreducible_representations_and_superselection_sectors} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{in_algebraic_quantum_theory}{In algebraic quantum theory}\dotfill \pageref*{in_algebraic_quantum_theory} \linebreak \noindent\hyperlink{in_geometric_quantization}{In geometric quantization}\dotfill \pageref*{in_geometric_quantization} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} An [[observable]] in [[quantum physics]]. \hypertarget{definition_in_geometric_quantization}{}\subsection*{{Definition in geometric quantization}}\label{definition_in_geometric_quantization} We consider the notion of quantum observables in the the context of [[geometric quantization]]. See also [[quantum operator (in geometric quantization)]]. \hypertarget{OnASymplecticManifold}{}\subsubsection*{{On a symplectic manifold}}\label{OnASymplecticManifold} Let $(X, \omega)$ be a ([[presymplectic manifold|pre]]-)[[symplectic manifold]], thought of as the [[phase space]] of a [[classical mechanics|physical system]]. Assume that $\omega$ is prequantizable (integral) and let $\nabla : X \to \mathbf{B} U(1)_{conn}$ be a [[prequantum bundle]] $E \to X$ [[connection on a bundle|with connection]] for $\omega$, hence with [[curvature]] $F_\nabla = \omega$. Write $\Gamma_X(E)$ for the space of smooth [[sections]] of the [[associated bundle|associated]] [[complex line bundle]]. This is the \emph{prequantum space of states}. \begin{defn} \label{}\hypertarget{}{} For $f \in C^\infty(X, \mathbb{C})$ a function on phase space, the corresponding \textbf{pre-quantum operator} is the linear map on prequantum states \begin{displaymath} \hat f : \Gamma_X(E) \to \Gamma_X(E) \end{displaymath} given by \begin{displaymath} \psi \mapsto -i \nabla_{v_f} \psi + f \cdot \psi \,, \end{displaymath} where \begin{itemize}% \item $v_f$ is the [[Hamiltonian vector field]] corresponding to $f$; \item $\nabla_{v_f} : \Gamma_X(E) \to \Gamma_X(E)$ is the [[covariant derivative]] of sections along $v_f$ for the given choice of prequantum connection; \item $f \cdot (-) : \Gamma_X(E) \to \Gamma_X(E)$ is the operation of degreewise multiplication pf sections. \end{itemize} \end{defn} \begin{remark} \label{}\hypertarget{}{} In terms of [[schreiber:Higher geometric prequantum theory]] we may, as discussed there, identify the [[Poisson bracket]] [[Lie algebra]] $\mathfrak{Poisson}(X,\omega)$ with the Lie algebra of the group of automorphism $\exp(O) \colon \nabla \stackrel{\simeq}{\to} \nabla$ regarded in the [[slice (∞,1)-topos|slice]] over $\mathbf{B}U(1)_{conn}$. Moreover, the space of sections is equivalently the space of maps $\Psi \colon \nabla \to \mathbb{C}//U(1)_{conn}$ in the slice from $\nabla$ into the differential refinement of the smooth universal line bundle $\mathbb{C}//U(1) \to \mathbf{B}U(1)$. In this formulation the action of prequantum operators is just the precomposition action \begin{displaymath} \widehat{\exp(O)} \colon (\nabla \stackrel{\Psi}{\to} \mathbb{C}//U(1)_{conn}) \mapsto (\nabla \stackrel{exp(O)}{\to} \nabla \stackrel{\Psi}{\to} \mathbb{C}//U(1)_{conn}) \,. \end{displaymath} \end{remark} Now after a choice of [[polarization]] a [[quantum state]] is a prequantum [[wave function]] which is covariantly constant along the [[Lagrangian submanifolds]] of the foliation. Not all prequantum operators will respect the space of such quantum states inside all quantum states. Those that do become genuine quantum operators. \begin{defn} \label{GeometricQuantumOperator}\hypertarget{GeometricQuantumOperator}{} Let $\mathcal{P}$ be a [[polarization]] of the [[symplectic manifold]] $(X,\omega)$. then a [[quantum state]] or [[wavefunction]] is a prequantum state $\psi$ such that $\nabla \Psi$ vanishes along the [[leaves]] of the polarization. A \textbf{quantum operator} is a prequantum operator which preserves quantum states among all prequantum states. \end{defn} \begin{prop} \label{CompatibiltyOfFlowWithPolarization}\hypertarget{CompatibiltyOfFlowWithPolarization}{} A prequantum operator given by a [[Hamiltonian]] function $f$ with [[Hamiltonian vector field]] $v_f$ is a quantum operator, def. \ref{GeometricQuantumOperator}, with respect to a given [[polarization]] $\mathcal{P}$ precisely if its flow preserves $\mathcal{P}$, hence precisely if \begin{displaymath} [v_f, \mathcal{P}] \subset \mathcal{P} \,. \end{displaymath} \end{prop} \begin{remark} \label{}\hypertarget{}{} If $\mathcal{P}$ is a [[Kähler polarization]] then its underlying [[almost complex structure]] it induces a [[spin{\tt \symbol{94}}c structure]], as discussed there. If $\rho \colon G \to QuantMorph(X,\nabla)$ is a [[Hamiltonian action]] (a homomorphism to the [[quantomorphism group]]) such that each prequantum operator $\rho(g)$ is a quantum operator in that it preserves the polarization, by prop. \ref{CompatibiltyOfFlowWithPolarization}, then the corresponding [[spin{\tt \symbol{94}}c structure]] is $G$-invariant. Accordingly the [[index]] of the [[spin{\tt \symbol{94}}c Dirac operator]] which gives the \href{http://ncatlab.org/nlab/show/geometric%20quantization#AsIndexOfSpinCDiracOperator}{geometric quantization by cohomological quantization} exists not just in [[K-theory]], where it yields the [[space of quantum states]], but even in $G$-[[equivariant K-theory]], exhibiting a [[representation]] of $G$ on the Hilbert space. This is the action of the quantum observables given by $\rho$ from the point of view of cohomological quantization. \end{remark} \begin{example} \label{}\hypertarget{}{} Over a phase space which is a [[cotangent bundle]] and with respect to the corresponding canonical vertical polarization, a Hamiltonian function is a quantum operator precisely if it is at most linear in the [[canonical momenta]]. \end{example} See for instance (\hyperlink{Blau}{Blau, around p. 35}) \hypertarget{on_an_plectic_smooth_groupoid}{}\subsubsection*{{On an $n$-plectic smooth $\infty$-groupoid}}\label{on_an_plectic_smooth_groupoid} (\ldots{}) \hypertarget{irreducible_representations_and_superselection_sectors}{}\subsubsection*{{Irreducible representations and superselection sectors}}\label{irreducible_representations_and_superselection_sectors} The [[space of quantum states]] forms a linear [[representation]] of a given [[algebra of observables]]. The decomposition of that into [[irreducible representations]] is physically the decomposition into [[superselection sectors]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[observable]] \item [[Bogoliubov's formula]] \end{itemize} [[!include products in pQFT -- table]] \begin{itemize}% \item [[causally local net of observables]] \item [[order-theoretic structure in quantum mechanics]] \begin{itemize}% \item [[Jordan algebra]], [[Bohr topos]] \item [[Harding-Döring-Hamhalter theorem]] \end{itemize} \item [[effect algebra]] \item [[Hamiltonian operator]] \item [[self-adjoint operator]], [[daseinisation]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{in_algebraic_quantum_theory}{}\subsubsection*{{In algebraic quantum theory}}\label{in_algebraic_quantum_theory} Comprehensive discussion is in \begin{itemize}% \item [[Urs Schreiber]], \emph{[[geometry of physics -- perturbative quantum field theory]]} -- \emph{\href{geometry+of+physics+--+perturbative+quantum+field+theory#Observables}{Observables}} \end{itemize} \hypertarget{in_geometric_quantization}{}\subsubsection*{{In geometric quantization}}\label{in_geometric_quantization} See also the references at [[geometric quantization]]. Standard facts are recalled for instance around p. 35 of \begin{itemize}% \item [[Matthias Blau]], \emph{Symplectic Geometry and Geometric Quantization} ([[BlauGeometricQuantization.pdf:file]]) \end{itemize} Computation of quantum observables by [[index]] maps in [[equivariant K-theory]] is in (see specifically around p. 8 and 9) \begin{itemize}% \item [[Michèle Vergne]], \emph{Geometric quantization and equivariant cohomology} (\href{http://www.math.jussieu.fr/~vergne/pageperso/articles/CONGEURO.pdf}{pdf}) \end{itemize} [[!redirects quantum observables]] [[!redirects quantum operator]] [[!redirects quantum operators]] \end{document}