\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{quantum probability theory} [[!redirects quantum probability]] [[!redirects quantum probability]] \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{measure_and_probability_theory}{}\paragraph*{{Measure and probability theory}}\label{measure_and_probability_theory} [[!include measure theory - contents]] \hypertarget{algebraic_quantum_field_theory}{}\paragraph*{{Algebraic Quantum Field Theory}}\label{algebraic_quantum_field_theory} [[!include AQFT and operator algebra contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{AsClassicalProbabilityInBohrTopos}{As classical probability theory internal to a Bohr topos}\dotfill \pageref*{AsClassicalProbabilityInBohrTopos} \linebreak \noindent\hyperlink{ConditionalExpectationAndWaveFunctionCollapse}{Conditional expectation and Wave function collapse}\dotfill \pageref*{ConditionalExpectationAndWaveFunctionCollapse} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In [[probability theory]], the concept of \emph{noncommutative probability space} or \emph{quantum probability space} is the generalization of that of \emph{[[probability space]]} as the concept of ``space'' is generalized to [[non-commutative geometry]]. The basic idea is to encode a would-be [[probability space]] [[Isbell duality|dually]] in its [[algebra of functions]] $\mathcal{A}$, typically regarded as a [[star algebra]], and encode the [[probability measure]] as a [[state on a star-algebra|state on this star algebra]] \begin{displaymath} \langle - \rangle \;\colon\; \mathcal{A} \longrightarrow \mathbb{C} \,. \end{displaymath} Hence this primarily [[axiom|axiomatizes]] the concept of \emph{[[expectation values]]} $\langle A\rangle$ (\hyperlink{Segal65}{Segal 65}, \hyperlink{Whittle92}{Whittle 92}) while leaving the nature of the underlying [[probability measure]] implicit (in contrast to the classical formalization of [[probability theory]] by [[Andrey Kolmogorov]]). Often $\mathcal{A}$ is assumed/required to be a [[von Neumann algebra]] (e.g. \hyperlink{Kuperberg05}{Kuperberg 05, section 1.8}). Often $\mathcal{A}$ is taken to be the full algebra of [[bounded operators]] on some [[Hilbert space]] (e.g. \hyperlink{Attal}{Attal, def. 7.1}). In [[quantum physics]], $\mathcal{A}$ is an [[algebra of observables]] (or a [[local net of observables|local net]] thereof) and $\langle (-)\rangle$ is a particular [[quantum state]], for instance a [[vacuum state]]. The formulation of [[non-perturbative quantum field theory]] from the algebraic perspective of quantum probability is known as \emph{[[algebraic quantum field theory]]} ([[AQFT]]). The formulation of [[perturbative quantum field theory]] from the algebraic perspective of quantum probability is known as \emph{[[perturbative algebraic quantum field theory]]} ([[pAQFT]]). The sentiment that [[quantum physics]] \emph{is} quantum probability theory is also referred to as the \emph{[[Bayesian interpretation of quantum mechanics]]} (``QBism''). \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{AsClassicalProbabilityInBohrTopos}{}\subsubsection*{{As classical probability theory internal to a Bohr topos}}\label{AsClassicalProbabilityInBohrTopos} The idea that \begin{quote}% [[quantum probability]] is ``just as'' classical [[probability theory]] but generalized to [[non-commutative geometry|non-commutative]] [[probability spaces]], hence, for [[quantum physics]], to quantized [[phase spaces]] \end{quote} may be made precise and fully manifest by understanding quantum probability theory as being classical [[probability theory]] \emph{[[internalization|internal]]} to the \emph{[[Bohr topos]]} of the given [[quantum mechanical system]]. For details see at \emph{[[Bohr topos]]} the section \emph{\href{Bohr+topos#KinematicsOnBohrTopos}{Kinematics in a Bohr topos}}. For going deeper, see at \emph{[[order-theoretic structure in quantum mechanics]]}. \hypertarget{ConditionalExpectationAndWaveFunctionCollapse}{}\subsubsection*{{Conditional expectation and Wave function collapse}}\label{ConditionalExpectationAndWaveFunctionCollapse} Quantum probability theory shows that ``[[wave function collapse]]'' is just part of the formula for [[conditional expectation values]] in [[quantum probability theory]] (e.g. \hyperlink{Kuperberg05}{Kuperberg 05, section 1.2}, \hyperlink{Yuan12}{Yuan 12}): Let $(\mathcal{A},\langle -\rangle)$ be a [[quantum probability space]], hence a [[complex numbers|complex]] [[star algebra]] $\mathcal{A}$ of [[quantum observables]], and a [[state on a star-algebra]] $\langle -\rangle \;\colon\; \mathcal{A} \to \mathbb{C}$. This means that for $A \in \mathcal{A}$ any [[observable]], its \emph{[[expectation value]]} in the given [[state on a star-algebra|state]] is \begin{displaymath} \mathbb{E}(A) \;\coloneqq\; \langle A \rangle \in \mathbb{C} \,. \end{displaymath} More generally, if $P \in \mathcal{A}$ is a [[real part|real]] [[idempotent]]/[[projector]] \begin{equation} P^\ast = P \,, \phantom{AAA} P P = P \label{RealIdempotent}\end{equation} thought of as an event, then for any observable $A \in \mathcal{A}$ the [[conditional expectation value]] of $A$, conditioned on the observation of $P$, is (e.g. \hyperlink{RedeiSummers06}{Redei-Summers 06, section 7.3}, see also \hyperlink{FroehlichSchubnel15}{Fröhlich-Schubnel 15, (5.49)}, \href{Froehlich19}{Fröhlich 19 (45)}) \begin{equation} \mathbb{E}(A \vert P) \;\coloneqq\; \frac{ \left \langle P A P \right\rangle }{ \left\langle P \right\rangle } \,. \label{ConditionalExpectation}\end{equation} Now assume a [[star-representation]] $\rho \;\colon\; \mathcal{A} \to End(\mathcal{H})$ of the [[algebra of observables]] by [[linear operators]] on a [[Hilbert space]] $\mathcal{H}$ is given, and that the state $\langle -\rangle$ is a [[pure state]], hence given by an [[vector]] $\psi \in \mathcal{H}$ (``[[wave function]]'') via the [[Hilbert space]] [[inner product]] $\langle (-), (-)\rangle \;\colon\; \mathcal{H} \otimes \mathcal{H} \to \mathbb{C}$ as \begin{displaymath} \begin{aligned} \langle A \rangle & \coloneqq \left\langle\psi \vert A \vert \psi \right\rangle \\ & \coloneqq \left\langle\psi, A \psi \right\rangle \end{aligned} \,. \end{displaymath} In this case the expression for the [[conditional expectation value]] \eqref{ConditionalExpectation} of an observable $A$ conditioned on an idempotent observable $P$ becomes (notationally suppressing the [[representation]] $\rho$) \begin{displaymath} \begin{aligned} \mathbb{E}(A\vert P) & = \frac{ \left\langle \psi \vert P A P\vert \psi \right\rangle }{ \left\langle \psi \vert P \vert \psi \right\rangle } \\ & = \frac{ \left\langle P \psi \vert A \vert P \psi \right\rangle }{ \left\langle P \psi \vert P \psi \right\rangle } \,, \end{aligned} \end{displaymath} where in the last step we used \eqref{ConditionalExpectation}. This says that \emph{assuming} that $P$ has been observed in the [[pure state]] $\vert \psi\rangle$, then the corresponding [[conditional expectation values]] are the same as actual [[expectation values]] but for the new pure state $\vert P \psi \rangle$. This is the statement of ``[[wave function collapse]]'': \begin{displaymath} \vert \psi \rangle \mapsto P \vert \psi \rangle \,. \end{displaymath} The original [[wave function]] is $\psi \in \mathcal{H}$, and after observing $P$ it ``collapses'' to $P \psi \in \mathcal{H}$ (up to normalization). \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[probability amplitude]] \item [[quantum statistical mechanics]] \item [[Bayesian interpretation of quantum mechanics]] \item [[quantum logic]] \item [[Bohr topos]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The axiomatization of [[probability theory]] in terms of the concept of [[expectation values]] (instead of [[probability measures]]) is amplified in \begin{itemize}% \item [[Irving Segal]], \emph{Algebraic integration theory}, Bull. Amer. Math. Soc. Volume 71, Number 3, Part 1 (1965), 419-489 (\href{https://projecteuclid.org/euclid.bams/1183526903}{Euclid}) \item [[Peter Whittle]], \emph{Probability via expectation}, Springer 1992 \end{itemize} Gentle exposition of the basics: \begin{itemize}% \item Jonathan Gleason, \emph{The $C^*$-algebraic formalism of quantum mechanics}, 2009 ([[Gleason09.pdf:file]], [[GleasonAlgebraic.pdf:file]]) \end{itemize} Further introduction to quantum probability theory: \begin{itemize}% \item [[Greg Kuperberg]], \emph{A concise introduction to quantum probability, quantum mechanics, and quantum computation}, 2005 (\href{http://www.math.ucdavis.edu/~greg/intro-2005.pdf}{pdf}) \item [[Miklos Redei]], [[Stephen Summers]], \emph{Quantum Probability Theory} (\href{https://arxiv.org/abs/quant-ph/0601158}{arXiv:quant-ph/0601158}) \item S. Attal, \emph{Quantum probability} (\href{http://math.univ-lyon1.fr/~attal/Quantum_Probability.pdf}{pdf}) \item [[Qiaochu Yuan]], \emph{\href{https://qchu.wordpress.com/2012/08/18/noncommutative-probability/}{Noncommutative probability}}, 2012 \item [[Qiaochu Yuan]], \emph{\href{https://qchu.wordpress.com/2012/09/09/finite-noncommutative-probability-the-born-rule-and-wave-function-collapse/}{Finite noncommutative probability, the Born rule, and wave function collapse}}, 2012 \end{itemize} Monographs: \begin{itemize}% \item [[Jürg Fröhlich]], B. Schubnel, \emph{Quantum Probability Theory and the Foundations of Quantum Mechanics}. In: Blanchard P., Fröhlich J. (eds.) \emph{The Message of Quantum Science}. Lecture Notes in Physics, vol 899. Springer 2015 (\href{https://arxiv.org/abs/1310.1484}{arXiv:1310.1484}, \href{https://doi.org/10.1007/978-3-662-46422-9_7}{doi:10.1007/978-3-662-46422-9\_7}) \item [[Jürg Fröhlich]], \emph{The structure of quantum theory}, Chapter 6 in \emph{The quest for laws and structure}, EMS 2016 (\href{https://www.researchgate.net/publication/308595814_The_Quest_for_Laws_and_Structure}{doi}, \href{https://www.ems-ph.org/books/show_abstract.php?proj_nr=207&vol=1&rank=8}{doi:10.4171/164-1/8}) \item [[Klaas Landsman]], \emph{Foundations of quantum theory -- From classical concepts to Operator algebras}, Springer Open 2017 (\href{https://link.springer.com/content/pdf/10.1007%2F978-3-319-51777-3.pdf}{pdf}) \end{itemize} [[!redirects quantum probability theories]] [[!redirects quantum probability]] [[!redirects quantum probabilities]] [[!redirects quantum probability space]] [[!redirects quantum probability spaces]] [[!redirects noncommutative probability]] [[!redirects noncommutative probabilities]] [[!redirects non-commutative probability]] [[!redirects non-commutative probabilities]] [[!redirects noncommutative probability space]] [[!redirects noncommutative probability spaces]] [[!redirects non-commutative probability space]] [[!redirects non-commutative probability spaces]] [[!redirects noncommutative probability theory]] [[!redirects noncommutative probability theories]] [[!redirects non-commutative probability theory]] [[!redirects non-commutative probability theories]] \end{document}