\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{quark-gluon plasma} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{fields_and_quanta}{}\paragraph*{{Fields and quanta}}\label{fields_and_quanta} [[!include fields and quanta - table]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{nonperturbative_regime}{Non-perturbative regime}\dotfill \pageref*{nonperturbative_regime} \linebreak \noindent\hyperlink{perturbative_regime}{Perturbative regime}\dotfill \pageref*{perturbative_regime} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{EarlyCosmologyAndNucleosynthesis}{Early cosmology and nucleosynthesis}\dotfill \pageref*{EarlyCosmologyAndNucleosynthesis} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{nonperturbative_aspects}{Non-perturbative aspects}\dotfill \pageref*{nonperturbative_aspects} \linebreak \noindent\hyperlink{experimental_realization}{Experimental realization}\dotfill \pageref*{experimental_realization} \linebreak \noindent\hyperlink{ReferencesInEarlyUniverseCosmology}{In early universe cosmology}\dotfill \pageref*{ReferencesInEarlyUniverseCosmology} \linebreak \noindent\hyperlink{ReferencesViaAdSCFT}{Description via geometric engineering of QCD on intersecting branes}\dotfill \pageref*{ReferencesViaAdSCFT} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{quark-gluon plasma} is the [[phase of matter]] of [[quantum chromodynamics]] at extremely high [[temperature]]. At high temperature [[quarks]] are not [[confinement|confined]] to [[hadron]] [[bound states]] but propagate freely together with the [[gluons]], forming a ``quark-gluon soup''. Since this is analogous to an ordinary [[plasma]] which is a [[phase of matter|phase]] where [[electrons]] and [[protons]] are no longer [[bound state|bound]] to [[atoms]] but propagate freely, one speaks of \emph{quark-gluon plasma}. \begin{quote}% \textbf{Schematic [[phase diagram]] of [[QCD]].} The vertical axis indicates [[temperature]] $T$, the horizontal axis indicates [[baryon]] [[density]]. At low enough temperature [[quarks]] and [[gluons]] only appear as [[hadron]] [[bound states]] ([[confinement]]). But above a critical temperature these [[hadron]] [[bound states]] break apart (deconfinement) and [[quarks]] and [[gluons]] may exist freely. This [[phase of matter|phase]] of [[QCD]] is the \emph{quark-gluon plasma}. graphics grabbed from \hyperlink{Blaizot03}{Blaizot 03}. \end{quote} \hypertarget{nonperturbative_regime}{}\subsubsection*{{Non-perturbative regime}}\label{nonperturbative_regime} Despite the [[confinement|deconfinement]] beyond [[temperature]] $T_c$, the quark-gluon plasma at temperature $\sim 4-5 T_c$ as produced in [[experiment]] (\hyperlink{AdamsEtAl05}{Adams et al. 05}, \hyperlink{AdcoxEtAl05}{Adcox et al. 05}) is apparently strongly [[coupling constant|coupled]], meaning that its properties are [[non-perturbative effects]] requiring discussion of [[QCD]] as a [[non-perturbative field theory]]. With an exact such theory largely missing, much of the theoretical discussion of the quark-gluon plasma involves [[lattice QCD]] computer simulation. Indication for strong coupling of the QG-plasma comes from the nature of the \emph{elliptic flow} seen both in [[experiment]] as well as in these computer simulations, which shows [[hydrodynamic]] behaviour with extremely small [[shear viscosity]] (e.g. \hyperlink{Shuryak01}{Shuryak 01}, \hyperlink{Chakraborty12}{Chakraborty 12}). It has been proposed (\hyperlink{PolicastroSonStarinets01}{Policastro-Son-Starinets 01}) that, therefore, an analytic approach to a description of the quark-gluon plasma (i.e. not just via [[lattice QCD]] computer experiment) might be given by approximate [[AdS-CFT duality]], hence by the [[AdS/QCD correspondence]] or [[fluid/gravity correspondence]] (see e.g. \hyperlink{BiagazziCotrone12}{Biagazzi-Cotrone 12}). The difficulty with this approach is that for [[QCD]] (as opposed to [[N=4 D=4 SYM]]) [[AdS-CFT duality]] applies only to some approximation, see at \emph{[[AdS/QCD correspondence]]} for more. \hypertarget{perturbative_regime}{}\subsubsection*{{Perturbative regime}}\label{perturbative_regime} At yet higher energies, the quark-gluon plasma is eventually supposed to be weakly [[coupling constant|coupled]] again, due to [[asymptotic freedom]] (e.g. \hyperlink{Blaizot03}{Blaizot 03}) \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{EarlyCosmologyAndNucleosynthesis}{}\subsubsection*{{Early cosmology and nucleosynthesis}}\label{EarlyCosmologyAndNucleosynthesis} In the [[standard model of cosmology]] a quark gluon plasma filled the universe about $10^{-6}$ comoving seconds after the [[Big Bang]]. Decrease of [[temperature]] then led to the quark-gluon plasma condensing out to form [[hadrons]] and in particular [[baryons]] and hence in particular [[nucleons]] ([[protons]] and [[neutrons]]) and eventually [[atomic nuclei]] (cosmic [[nucleosynthesis]]). \begin{quote}% graphics grabbed from \hyperlink{Haseeb09}{Haseeb 09} \end{quote} See the references \hyperlink{ReferencesInEarlyUniverseCosmology}{below}. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item The quark-gluon plasma is naturally studied in terms of [[infinite-temperature thermal field theory]] (\hyperlink{BlaizotIancuRebhan03}{Blaizot-Iancu-Rebhan 03, section 2.2.4}, \hyperlink{Blaizot04}{Blaizot 04, around p. 17}) \item the [[QCD trace anomaly]] affects the [[equation of state]] of the quark-gluon plasma. \item In as far as the quark-gluon plasma is described by [[fluid dynamics]], the [[fluid/gravity correspondence]] applies. \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} \begin{itemize}% \item Stanislaw Mrowczynski, \emph{Quark-Gluon Plasma}, Acta Phys.Polon.B29:3711, 1998 (\href{https://arxiv.org/abs/nucl-th/9905005}{arXiv:nucl-th/9905005}) \item Mahnaz Q. Haseeb, \emph{Introduction to Quark Gluon Plasma}, 2009 (\href{http://www.ncp.edu.pk/docs/fslp/dr_mehnaz_qgp_hydrodynamics_001.pdf}{pdf}) \item Roman Pasechnik, Michal Šumbera, \emph{Phenomenological Review on Quark-Gluon Plasma: Concepts vs. Observations}, Universe 2017, 3(1), 7 (\href{https://arxiv.org/abs/1611.01533}{arXiv:1611.01533}) \item Jean-Paul Blaizot, Edmond Iancu, Anton Rebhan, \emph{Thermodynamics of the high temperature quark gluon plasma}, Quark–Gluon Plasma 3, pp. 60-122 (2004) (\href{https://arxiv.org/abs/hep-ph/0303185}{arXiv:hep-ph/0303185}, \href{http://inspirehep.net/record/615570}{spire:615570}) \item Jean-Paul Blaizot, around p. 17 of \emph{Thermodynamics of the high temperature Quark-Gluon Plasma}, AIP Conf. Proc. 739, 63-96 (2004) (\href{https://doi.org/10.1063/1.1843592}{doi:10.1063/1.1843592}) \end{itemize} See also \begin{itemize}% \item Wikipedia, \emph{\href{http://en.wikipedia.org/wiki/Quark%E2%80%93gluon_plasma}{Quark-Gluon plasma}} \end{itemize} \hypertarget{nonperturbative_aspects}{}\subsubsection*{{Non-perturbative aspects}}\label{nonperturbative_aspects} Discussion of [[non-perturbative effects]] in [[QCD]]: \begin{itemize}% \item [[Edward Shuryak]], \emph{Nonperturbative QCD and Quark-Gluon Plasma}, lectures at Trieste, 2001 (\href{http://users.ictp.it/~pub_off/lectures/lns010/Shuryak/Shuryak.pdf}{pdf}) \item Purnendu Chakraborty, \emph{Non-perturbative aspects of quark gluon plasma above deconfinement temperature}, Proceedings of the DAE Symp. on Nucl. Phys. 57 (2012) (\href{http://www.sympnp.org/proceedings/57/I20.pdf}{pdf}) \end{itemize} Further discussion in relation to [[instantons in QCD]] includes \begin{itemize}% \item Nikolai Kochelev, \emph{Ultra-light Glueballs in Quark-Gluon Plasma} (\href{http://arxiv.org/abs/1501.07002}{arXiv:1501.07002}) \end{itemize} \hypertarget{experimental_realization}{}\subsubsection*{{Experimental realization}}\label{experimental_realization} Realization of the quark-gluon plasma at the [[RHIC]] [[experiment]] has tentatively been claimed in \begin{itemize}% \item John Adams, et al. \emph{Experimental and theoretical challenges in the search for the quark–gluon plasma: The STAR Collaboration's critical assessment of the evidence from RHIC collisions}. Nuclear Physics A 757.1-2 (2005): 102-183. \item K. Adcox, et al., \emph{Formation of dense partonic matter in relativistic nucleus–nucleus collisions at RHIC: experimental evaluation by the PHENIX collaboration} Nuclear Physics A 757.1-2 (2005): 184-283. \end{itemize} \hypertarget{ReferencesInEarlyUniverseCosmology}{}\subsubsection*{{In early universe cosmology}}\label{ReferencesInEarlyUniverseCosmology} Discussion of the quark gluon-plasma in [[cosmology]] as the [[phase of matter]] shortly after the [[standard model of cosmology|big bang]]: \begin{itemize}% \item [[Edward Witten]], \emph{Cosmic Separation Of Phases}, Phys. Rev. D30, 272 (1984) (\href{https://doi.org/10.1103/PhysRevD.30.272}{doi:10.1103/PhysRevD.30.272}) \item Dominik J. Schwarz, \emph{The first second of the Universe}, Annalen Phys.12:220-270, 2003 (\href{https://arxiv.org/abs/astro-ph/0303574}{arXiv:astro-ph/0303574}) \item K. Sakthi Murugesan, G. Janhavi, and P. R. Subramanian, \emph{Can the phase transition from quark-gluon plasma to hadron-resonance gas affect primordial nucleosynthesis?}, Phys. Rev. D 41, 2384 (\href{https://doi.org/10.1103/PhysRevD.41.2384}{doi:10.1103/PhysRevD.41.2384}) \item K. Sakthi Murugesan, G. Janhavi, and P. R. Subramanian, \emph{Importance of interactions in quark-gluon plasma: Baryon-number density contrast and primordial nucleosynthesis}, Phys. Rev. D 42, 3576 (1990) (\href{https://doi.org/10.1103/PhysRevD.42.3576}{arXiv:10.1103/PhysRevD.42.3576}) \item [[Keith Olive]], \emph{The Quark - hadron transition in cosmology and astrophysics}, Science 251, 1194 (1991) \item A.A. Coley, T. Trappenberg, \emph{The Quark-Hadron Phase Transition, QCD Lattice Calculations and Inhomogeneous Big-Bang Nucleosynthesis}, Phys.Rev. D50 (1994) 4881-4885 (\href{https://arxiv.org/abs/astro-ph/9307031}{arXiv:astro-ph/9307031}) \item Hideo Suganuma, Hiroko Ichie, Hideko Monden, Shoichi Sasaki, Manabu Orito, Tadahiro Yamamoto, Toshitaka Kajino, \emph{QCD Phase Transition at high Temperature in Cosmology} (\href{https://arxiv.org/abs/hep-ph/9608333}{arXiv:hep-ph/9608333}) \item Deepak Chandra, Ashok Goyal, \emph{Dynamical evolution of the Universe in the quark-hadron phase transition and possible nugget formation}, Phys.Rev. D62 (2000) 063505 (\href{https://arxiv.org/abs/hep-ph/9903466}{arXiv:hep-ph/9903466}) \item N. Borghini, W. N. Cottingham, R. Vinh Mau, \emph{Possible Cosmological Implications of the Quark-Hadron Phase Transition}, J.Phys.G26:771, 2000 (\href{https://arxiv.org/abs/hep-ph/0001284}{arXiv:hep-ph/0001284}) \item Joseph I Kapusta, \emph{Quark-Gluon Plasma in the Early Universe}, in \emph{Phase Transitions in the Early Universe: Theory and Observations} Springer, Dordrecht, 2001. 103-121 (\href{https://arxiv.org/abs/astro-ph/0101516}{arXiv:astro-ph/0101516}) \item Michael McGuigan, Wolfgang Söldner, \emph{QCD Cosmology from the Lattice Equation of State} (\href{https://arxiv.org/abs/0810.0265}{arXiv:0810.0265}, \href{http://inspirehep.net/record/798226}{spire:798226}) \end{itemize} \begin{quote}% The effect of the strong interactions on cosmology was considered early on 10, 11 but the [[non-perturbative effect|nonperturbative]] nature of the strong interactions at low energy limited the progress of the subject. \end{quote} \begin{itemize}% \item S. M. Blinder, \emph{\href{http://demonstrations.wolfram.com/EvolutionOfMatterFromAQuarkGluonPlasma/}{Evolution of Matter from a Quark-Gluon Plasma}}, Wolfram Demonstration Project, 2011 \item \emph{The liquid universe -- quark-gluon plasma and the creation of matter} (\href{http://rhig.physics.wayne.edu/REU/new_talks/nuclear.pdf}{pdf}) \item Sz. Borsanyi, Z. Fodor, K. H. Kampert, S. D. Katz, T. Kawanai, T. G. Kovacs, S. W. Mages, A. Pasztor, F. Pittler, J. Redondo, A. Ringwald, K. K. Szabo, \emph{Lattice QCD for Cosmology} (\href{https://arxiv.org/abs/1606.07494}{arXiv:1606.07494}) \end{itemize} \hypertarget{ReferencesViaAdSCFT}{}\subsubsection*{{Description via geometric engineering of QCD on intersecting branes}}\label{ReferencesViaAdSCFT} Description via [[geometric engineering of QFTs|geometric engineering]] of [[QCD]] on [[intersecting branes]] (``[[holographic QCD]]'' see also at [[string theory results applied elsewhere]]): Expositions and reviews include \begin{itemize}% \item Pavel Kovtun, \emph{Quark-Gluon Plasma and String Theory}, RHIC news (2009) (\href{http://www.bnl.gov/rhic/news/091107/story2.asp}{blog entry}) \item Makoto Natsuume, \emph{String theory and quark-gluon plasma} (\href{http://arxiv.org/abs/hep-ph/0701201}{arXiv:hep-ph/0701201}) \item [[Steven Gubser]], \emph{Using string theory to study the quark-gluon plasma: progress and perils} (\href{http://arxiv.org/abs/0907.4808}{arXiv:0907.4808}) \item Francesco Biagazzi, A. Cotrone, \emph{Holography and the quark-gluon plasma}, AIP Conference Proceedings 1492, 307 (2012) (\href{https://doi.org/10.1063/1.4763537}{doi:10.1063/1.4763537}, \href{http://cp3-origins.dk/content/movies/2013-01-14-bigazzi.pdf}{slides pdf}) \item Brambilla et al., section 9.2.2 of \emph{QCD and strongly coupled gauge theories: challenges and perspectives}, Eur Phys J C Part Fields. 2014; 74(10): 2981 (\href{https://link.springer.com/article/10.1140%2Fepjc%2Fs10052-014-2981-5}{doi:10.1140/epjc/s10052-014-2981-5}) \item Jorge Casalderrey-Solana, Hong Liu, David Mateos, Krishna Rajagopal, Urs Achim Wiedemann, \emph{Gauge/string duality, hot QCD and heavy ion collisions}, Cambridge University Press, 2014 (\href{https://arxiv.org/abs/1101.0618}{arXiv:1101.0618}) \end{itemize} and specifically via ``[[improved holographic QCD]]'' \begin{itemize}% \item Umut Gürsoy, [[Elias Kiritsis]], Liuba Mazzanti, Georgios Michalogiorgakis, Francesco Nitti, \emph{Improved Holographic QCD}, Lect.Notes Phys.828:79-146,2011 (\href{https://arxiv.org/abs/1006.5461}{arXiv:1006.5461}) \end{itemize} Holographic discussion of the [[shear viscosity]] of the quark-gluon plasma goes back to \begin{itemize}% \item [[Giuseppe Policastro]], D.T. Son, A.O. Starinets, \emph{Shear viscosity of strongly coupled $N=4$ supersymmetric Yang-Mills plasma}, Phys. Rev. Lett.87:081601, 2001 (\href{http://arxiv.org/abs/hep-th/0104066}{arXiv:hep-th/0104066}) \end{itemize} Other original articles include: \begin{itemize}% \item Brett McInnes, \emph{Holography of the Quark Matter Triple Point} (\href{http://arxiv.org/abs/0910.4456}{arXiv:0910.4456}) \item Hovhannes R. Grigoryan, Paul M. Hohler, Mikhail A. Stephanov, \emph{Towards the Gravity Dual of Quarkonium in the Strongly Coupled QCD Plasma} (\href{http://arxiv.org/abs/1003.1138}{arXiv:1003.1138}) \item Mansi Dhuria, Aalok Misra, \emph{Towards MQGP}, JHEP 1311 (2013) 001 (\href{https://arxiv.org/abs/1306.4339}{arXiv:1306.4339}) \item Sara Heshmatian, Razieh Morad, \emph{Jet suppression in non-conformal plasma using AdS/CFT} (\href{https://arxiv.org/abs/1812.09374}{arXiv:1812.09374}) \end{itemize} [[!redirects quark-gluon plasmas]] [[!redirects quark gluon plasma]] [[!redirects quark gluon plasmas]] \end{document}