\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{quasi-Hopf algebra} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{algebra}{}\paragraph*{{Algebra}}\label{algebra} [[!include higher algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{motivation_from_quantum_field_theory}{Motivation from quantum field theory}\dotfill \pageref*{motivation_from_quantum_field_theory} \linebreak \noindent\hyperlink{definition_drinfeld}{Definition (Drinfeld)}\dotfill \pageref*{definition_drinfeld} \linebreak \noindent\hyperlink{twisting_quasibialgebras_by_2cochains}{Twisting quasibialgebras by 2-cochains}\dotfill \pageref*{twisting_quasibialgebras_by_2cochains} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \hypertarget{general}{}\subsubsection*{{General}}\label{general} The notion of a quasibialgebra generalizes this of a [[bialgebra]][[Hopf algebra]] by introducing a nontrivial [[associativity]] [[coherence]] (\hyperlink{Drinfeld89}{Drinfeld 89}) isomorphisms (representable by multiplication with an element in triple tensor product) into axioms; a \emph{quasi-Hopf algebra} is a quasibialgebra with an antipode satisfying axioms which also involve nontrivial left and right unit coherences. In particular, quasi-Hopf algebras may be obtained from ordinary Hopf algebras by twisting by a [[Drinfeld associator]], i.e. a nonabelian [[bialgebra cocycle|bialgebra 3-cocycle]]. \hypertarget{motivation_from_quantum_field_theory}{}\subsubsection*{{Motivation from quantum field theory}}\label{motivation_from_quantum_field_theory} Drinfel'd was motivated by study of [[monoidal categories]] in [[rational CFT|rational]] 2d [[conformal field theory]] (RCFT) as well as by an idea from [[Grothendieck]]`s \emph{[[Esquisse d'un programme|Esquisse]]} namely the [[Grothendieck-Teichmüller tower]] and its modular properties. In RCFT, the [[monoidal categories]] appearing can be, by [[Tannaka duality|Tannaka reconstruction]] considered as [[categories of modules]] of [[Hopf algebra]]-like objects where the flexibility of associativity coherence in building a theory were natural thus leading to quasi-Hopf algebras. A special case of the motivation in RCFT has a toy example of [[Dijkgraaf-Witten theory]] which can be quite geometrically explained. Namely, where the [[groupoid convolution algebra]] of the [[delooping]] [[groupoid]] $\mathbf{B}G$ of a [[finite group]] $G$ naturally has the structure of a Hopf algebra, the [[twisted groupoid convolution algebra]] of $\mathbf{B}G$ equipped with a 3-[[cocycle]] $c \colon \mathbf{B}G \to \mathbf{B}^3 U(1)$ is naturally a quasi-Hopf algebra. Since such a 3-cocycle is precisely the [[background gauge field]] of the 3d [[TFT]] called [[Dijkgraaf-Witten theory]], and hence quasi-Hopf algebras arise there (\hyperlink{DijkgraafPasquierRoche}{Dijkgraaf-Pasquier-Roche 91}). \hypertarget{definition_drinfeld}{}\subsection*{{Definition (Drinfeld)}}\label{definition_drinfeld} A \textbf{quasibialgebra} is a unital [[associative algebra]] $(A,m,\eta)$ with a structure of not necessarily coassociative coalgebra $(A,\Delta,\epsilon)$, with multiplicative comultiplication $\Delta$ and counit $\epsilon$, and an invertible element $\phi \in A\otimes A\otimes A$ such that (i) the coassociativity is modified by conjugation by $\phi$ in the sense \begin{displaymath} (\Delta \otimes 1)\Delta(a) = \phi\left((1\otimes\Delta)\Delta(a)\right)\phi^{-1},\,\,\,\,\,\forall a\in A, \end{displaymath} (ii) the following pentagon identity holds \begin{displaymath} (1\otimes 1\otimes\Delta)(\phi)(\Delta\otimes 1\otimes 1)(\phi) = (1\otimes\phi)(1\otimes\Delta\otimes 1)(\phi)(\phi\otimes 1) \end{displaymath} (iii) some identities involving unit $\eta$ and counit $\epsilon$ hold: \begin{displaymath} (\epsilon\otimes A)\Delta(a) = a = (A\otimes\epsilon)\Delta(a), \,\,\,\,\,\,a\in A; \end{displaymath} \begin{displaymath} (A\otimes\epsilon\otimes A)\phi = 1. \end{displaymath} It follows that $(\epsilon\otimes\epsilon\otimes A)\phi = 1 = (A\otimes\epsilon\otimes\epsilon)\phi$. The category of left $A$-modules is a monoidal category, namely the coproduct is used to define the action of $A$ on the tensor product of modules $(M,\nu^M)$, $(N,\nu^N)$: \begin{displaymath} A \otimes (M\otimes N) \stackrel{\Delta\otimes M\otimes N}\longrightarrow (A\otimes A)\otimes(M\otimes N) \rightarrow (A\otimes M)\otimes (A\otimes N)\stackrel{\nu_M\otimes\nu_N}\longrightarrow M\otimes N \end{displaymath} Using the Sweedler-like notation $\phi = \sum \phi^1\otimes \phi^2\otimes \phi^3$, formulas \begin{displaymath} \Phi_{M,N,P}: (M\otimes N)\otimes P\stackrel\cong\longrightarrow M\otimes (N\otimes P) \end{displaymath} \begin{displaymath} (m\otimes n)\otimes p\mapsto \sum (\phi^1\triangleright m) \otimes ((\phi^2\triangleright n)\otimes (\phi^3\triangleright p)) \end{displaymath} define a natural transformation $\Phi$ and the pentagon for $\phi$ yields the MacLane's pentagon for $\Phi$ understood as a new associator, \begin{displaymath} (M\otimes\Phi_{N,P,Q})\Phi_{M,N\otimes P,Q}(\Phi_{M,N,P}\otimes Q)=\Phi_{M,N,P\otimes Q}\Phi_{M\otimes N,P,Q} \end{displaymath} For this reason, $\phi$ is sometimes called the associator of the quasibialgebra. While it is due Drinfeld, another variant of it, written as a formal power series and used in knot theory is often called the [[Drinfeld associator]] (see there). A \textbf{quasi-Hopf algebra} is a quasibialgebra with a suitable notion of antipode. \hypertarget{twisting_quasibialgebras_by_2cochains}{}\subsubsection*{{Twisting quasibialgebras by 2-cochains}}\label{twisting_quasibialgebras_by_2cochains} The associator $\phi$ is a counital 3-cocycle in the sense of bialgebra cohomology theory of Majid. The 3-cocycle condition is the pentagon for $\phi$. The abelian cohomology would add a coboundary of 2-cochain to get a cohomologous 3-cocycle. In nonabelian case, however, the twist by an invertible 2-cochain is done in a nonabelian way, described by Drinfeld and generalized by Majid to $n$-cochains. Thus, for a bialgebra $A$, and fixed $n$, the $i$-th coface \begin{displaymath} \partial^i = id_{A^{\otimes (i-1)}}\otimes \Delta \otimes \id_{A^{\otimes (n-i)}} : A^{\otimes n}\to A^{\otimes (n+1)}, \end{displaymath} for $1\leq i\leq n$, and $\partial^0 = 1\otimes id_{A^{\otimes n}}$, $\partial^n = id_{A^{\otimes n}}\otimes 1$. For $F\in H^{\otimes n}$, Majid defines \begin{displaymath} \partial^+ F = \prod_{i\,\,\,\,even} (\partial^i F),\,\,\,\,\,\partial^- F = \prod_{i\,\,\,\,odd} (\partial^i F), \end{displaymath} where the products are in the order of ascending $i$. If $F\in A^{\otimes n}$ is a cochain then its coboundary is $\delta F = (\partial^+ F)(\partial^- F^{-1})$, which is automatically an $(n+1)$-cochain. If $Fin A^{\otimes n}$ is an $n$-cochain and $\phi\in A^{\otimes (n+1)}$ is an $(n+1)$-cochain then one defines a cochain twist $\phi^F$ of $\phi$ by $F$ by the formula \begin{displaymath} \phi^F = (\partial^+ F)\phi(\partial^- F^{-1}). \end{displaymath} Drinfeld proved that for $n=2$ the following is true. Given a quasiabialgebra $A = (A,m,\eta,\Delta,\epsilon,\phi)$ and a 2-cochain $F$, the data $A^F = (A,m,\eta,F\Delta(-)F^{-1},\epsilon,\phi^F)$ is also a quasibialgebra. Furthermore, categories of representations $A-mod$ and $A^F-mod$ are monoidally equivalent reflecting the idea that cohomologous cocycles lead to nonessential categorical effects. If $(A,R)$ is quasitriangular quasibialgebra then we can twist the R-element $R\in H\otimes H$ to $R^F = F_{21} R F$ to obtain quasitriangular quasibialgebra $(A^F,R^F)$ and their braided monoidal categories of representations are braided monoidally equivalent. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[hopfish algebra]] \item [[quasitriangulated quasi-Hopf algebra]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The notion was introduced in \begin{itemize}% \item [[Vladimir Drinfel'd]], \emph{ }, Algebra i Analiz \textbf{1} (1989), no. 6, 114--148, \href{http://www.mathnet.ru/php/getFT.phtml?jrnid=aa&paperid=53&what=fullt&option_lang=rus}{pdf}; translation \emph{Quasi-Hopf algebras}, Leningrad Math. J. \textbf{1} (1990), no. 6, 1419--1457 \href{http://www.ams.org/mathscinet-getitem?mr=1047964}{MR1047964} \end{itemize} The relation to [[Dijkgraaf-Witten theory]] appeared in \begin{itemize}% \item [[Robbert Dijkgraaf]], V. Pasquier, P. Roche, \emph{QuasiHopf algebras, group cohomology and orbifold models}, Nucl. Phys. B Proc. Suppl. \textbf{18B} (1990), 60-72; \emph{Quasi-quantum groups related to orbifold models}, Modern quantum field theory (Bombay, 1990), 375--383, World Sci. 1991 \end{itemize} and some arguments about the general relevance of quasi-Hopf algebras is in \begin{itemize}% \item Gerhard Mack, [[Volker Schomerus]], \emph{Quasi Hopf quantum symmetry in quantum theory}, Nuclear Physics B 370:1 (1992) 185--230 \end{itemize} Recently a monograph appeared \begin{itemize}% \item Daniel Bulacu, Stefaan Caenepeel, Florin Panaite, Freddy Van Oystaeyen, \emph{Quasi-Hopf algebras: a categorical approach}, 544 pp., EMA 174 (2019) \end{itemize} Wikipedia article: \href{https://en.wikipedia.org/wiki/Quasi-Hopf_algebra}{Quasi-Hopf algebra} Other articles include \begin{itemize}% \item . . , \emph{ }, . . \textbf{26}:1 (1992), 78--80, \href{http://www.mathnet.ru/php/getFT.phtml?jrnid=faa&paperid=768&what=fullt&option_lang=rus}{pdf}; transl. V. G. Drinfeld, \emph{Structure of quasitriangular quasi-hopf algebras}, Funct. Anal. Appl., 26:1 (1992), 63--65 \item V. G. Drinfeld, \emph{ , $\mathrm{Gal}(\overline{\mathbf{Q}}/\mathbf {Q})$}, Algebra i Analiz 2 (1990), no. 4, 149--181, \href{http://www.mathnet.ru/php/getFT.phtml?jrnid=aa&paperid=199&volume=2&year=1990&issue=4&fpage=149&what=fullt&option_lang=eng}{pdf}; translation \emph{On quasitriangular quasi-Hopf algebras and on a group that is closely connected with $\mathrm{Gal}(\overline{\mathbf{Q}}/\mathbf {Q})$}, Leningrad Math. J. \textbf{2} (1991), no. 4, 829--860, \href{http://www.ams.org/mathscinet-getitem?mr=1080203}{MR1080203} \item V. G. Drinfeld, \emph{Quasi-Hopf algebras and Knizhnik-Zamolodchikov equations}, Problems of modern quantum field theory (Alushta, 1989), 1--13, Res. Rep. Phys., Springer 1989. \item [[Shahn Majid]], \emph{Quantum double for quasi-Hopf algebras}, Lett. Math. Phys. \textbf{45} (1998), no. 1, 1--9, \href{http://www.ams.org/mathscinet-getitem?mr=1631648}{MR2000b:16077}, \href{http://dx.doi.org/10.1023/A:1007450123281}{doi}, \href{http://arxiv.org/abs/q-alg/9701002}{q-alg/9701002} \item Peter Schauenburg, \emph{Hopf modules and the double of a quasi-Hopf algebra}, Trans. Amer. Math. Soc. \textbf{354} (2002), 3349-3378 \href{http://www.ams.org/journals/tran/2002-354-08/S0002-9947-02-02980-X/S0002-9947-02-02980-X.pdf}{pdf} \item M. Jimbo, H. Konno, S. Odake, J. Shiraishi, \emph{Quasi-Hopf twistors for elliptic quantum groups}, Transformation Groups 4(4), 303–327 (1999) \href{http://sci-hub.tw/10.1007/BF01238562}{doi} \item Ivan Kobyzev, Ilya Shapiro, \emph{A categorical approach to cyclic cohomology of quasi-Hopf algebras and Hopf algebroids}, Applied Categorical Structures, \textbf{27}:1 (2019) 85–109 \href{https://doi.org/10.1007/s10485-018-9544-0}{doi} \item L Frappat, D Issing, E Ragoucy, \emph{The quantum determinant of the elliptic algebra $\mathcal{A}_{q, p}(\widehat{gl}_N)$}, J. Phys. \textbf{A51}:44, \href{https://doi.org/10.1088/1751-8121/aae296}{doi} \end{itemize} [[!redirects quasibialgebra]] [[!redirects quasihopf algebra]] [[!redirects quasiHopf algebra]] [[!redirects quasi-bialgebra]] [[!redirects quasi-Hopf algebras]] \end{document}