\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{quasicoherent infinity-stack} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{$(\infty,2)$-Topos theory}}\label{topos_theory} [[!include (infinity,2)-topos theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{model_category_theoretic_presentation}{Model category theoretic presentation}\dotfill \pageref*{model_category_theoretic_presentation} \linebreak \noindent\hyperlink{for_commutative_monoids}{For commutative monoids}\dotfill \pageref*{for_commutative_monoids} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The notion of \emph{quasicoherent [[∞-stack]] of modules} is the anlog in [[(∞,1)-topos theory]] of the notion of [[quasicoherent sheaf]] in [[topos theory]]. A quasicoherent sheaf on a [[scheme]] $X$ is is equivalently a morphism of [[stack]]s $X \mapsto Mod$ into the canonical stack [[Mod]] $: Spec A \mapsto A Mod$ of [[module]]s, which corresponds to the [[bifibration]] $Mod \to CRing$ over the category of commutative rings/algebras: this is the [[tangent category]] of [[CRing]]. This general abstract description of quasi-coherent sheaves has a fairly direct generalization to [[(∞,1)-topos theory]] over arbitrary [[(∞,1)-site]]s: for $C$ any [[(∞,1)-site]], the [[tangent (∞,1)-category]] $T (C^{op}) \to C^{op}$ is the [[Cartesian fibration|bifibration]] whose [[fiber]]s over an object $A \in C^{op}$ plays the role of the [[∞-groupoid]] of [[module]]s over $A$. Under the [[(∞,1)-Grothendieck construction]] this corresponds to an [[(∞,1)-presheaf]] $\infty Mod : C^{op} \to \infty Cat$ \begin{displaymath} \infty Mod : Spec R \mapsto Stab( C^{op}/R ) \end{displaymath} or directly in terms of test spaces $U$: \begin{displaymath} \infty Mod : U \mapsto Stab( U/C ) \,. \end{displaymath} For the special case that $C = (sAlg^{op})^\circ$ [[opposite (∞,1)-category]] presented by the [[model structure on simplicial algebras]] over a characteristic 0 ground field we have (with example 8.6 of \emph{[[Stable ∞-Categories]]} ) this reproduces the notion of quasicoherent $\infty$-stack as considered in [[dg-geometry]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{udefn} For $C$ an [[(∞,1)-site]] let the [[(∞,1)-functor]] \begin{displaymath} Mod_C : C^{op} \to (\infty,1)Cat \end{displaymath} be that corresponding under the [[(∞,1)-Grothendieck construction]] to the [[tangent (∞,1)-category]] $T C^{op} \to C^{op}$. \end{udefn} Let $\mathbf{H} := Sh_{(\infty,1)}(C)$ be the [[(∞,1)-category of (∞,1)-sheaves]] over $C$. Notice that this sits inside $[C^{op}, (\infty,1)Cat]$. \begin{udefn} For $X \in \mathbf{H}$, the \textbf{$(\infty,1)$-category of quasi-coherent $\infty$-stacks on $X$ is the [[(∞,1)-category of (∞,1)-functors]]} \begin{displaymath} QC(X) := [C^{op}, (\infty,1)Cat](X, Mod) \,. \end{displaymath} \end{udefn} \hypertarget{model_category_theoretic_presentation}{}\subsection*{{Model category theoretic presentation}}\label{model_category_theoretic_presentation} For [[derived geometry]] modeled on formal duals of [[algebras over an operad]], the [[model category]] presentation of quasi-coherent $\infty$-stacks is locally given by a [[model structure on modules over an algebra over an operad]]. The following considers the special case of the [[commutative operad]]. \hypertarget{for_commutative_monoids}{}\subsubsection*{{For commutative monoids}}\label{for_commutative_monoids} Let $\mathcal{C}$ be a [[monoidal model category]]. Write $CMon(\mathcal{C})$ for the category of [[commutative monoid]]s in $\mathcal{C}$. For instance \begin{itemize}% \item for $\mathcal{C} =$ [[Ab]] a monoid object in $\mathcal{C}$ is an ordinary [[ring]] and its formal dual an ordinary [[affine scheme]]; \item for $\mathcal{C} = sAb$, the category of abelian [[simplicial group]]s, a monoid in $\mathcal{C}$ is a [[simplicial ring]] and its formal dual is one notion of affine [[derived scheme]]. \end{itemize} In (\href{ToënVezzosiI}{To\"e{}nVezzosi, I}, \hyperlink{ToënVezzosiII}{To\"e{}nVezzosi, II}) are discussed structures of a [[model site]]/[[sSet-site]] on $CMon(\mathcal{C})$. For every commutative monoid $A \in \mathcal{C}$ There is naturally a [[model category]] structure on the category $A Mod$ of $A$-[[module]]s in $\mathcal{C}$. (\ldots{}) Let $[C^{op},sSet]_{proj,loc}$ the local [[model structure on sSet-presheaves]] that [[presentable (∞,1)-category|presents]] the [[(∞,1)-category of (∞,1)-sheaves]]/[[∞-stack]]s on $C$ \begin{displaymath} ([C^{op}, sSet]_{proj,loc})^\circ \simeq \mathbf{H} := Sh_{(\infty,1)}(C) \,. \end{displaymath} as described as [[models for ∞-stack (∞,1)-toposes]]. So in this model an $\infty$-stack is a [[simplicial presheaf]] $C^{op} \to SSet$ on a simplicial site $C$ that takes values in [[Kan complex]]es and satisfies [[descent]] with respect to [[hypercover]]s in the [[homotopy category]] of $C$. \begin{udefn} The [[simplicial presheaf]] of \textbf{quasicoherent $\infty$-stacks} is \begin{displaymath} QC : C^{op} \to sSet \end{displaymath} is given by \begin{displaymath} QC : Spec A \mapsto N( A Mod_{cof, \sim} ) \,, \end{displaymath} where on the right we have the [[nerve]] of the non-full [[subcategory]] of the model category $A Mod$ on cofibrant objects and weak equivalences between them. \end{udefn} This appears as (\hyperlink{ToenVezzosiII}{To\"e{}nVezzosiII, definition 1.3.7.1}. \begin{uprop} This $QC$ is indeed an [[∞-stack]] on the [[model site]] $C := Comm(\mathcal{C})^{op}$ \end{uprop} This is (\hyperlink{ToenVezzsoi}{To\"e{}nVezzosiII, theorem 1.3.7.2}. \begin{quote}% notice: the $QC$ defined this way is not yet stabilized \end{quote} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[quasicoherent sheaf]] \item \textbf{quasicoherent $\infty$-stack} \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The general discussion of the [[tangent (∞,1)-category]] is in \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Deformation Theory]]} . \end{itemize} The model category theoretic presentation over model sites of commutative monoids is discussed in \begin{itemize}% \item [[Bertrand Toën]], [[Gabriele Vezzosi]], \emph{Homotopical Algebraic Geometry I: Topos theory} (\href{http://arxiv.org/abs/math/0207028}{arXiv:0207028}) \end{itemize} \begin{itemize}% \item [[Bertrand Toën]], [[Gabriele Vezzosi]], \emph{Homotopical Algebraic Geometry II: geometric stacks and applications} (\href{http://arxiv.org/abs/math/0404373}{arXiv:0404373}) \end{itemize} A discussion specific to [[dg-geometry]] with an emphasis on the [[geometric ∞-function theory]] of quasicoherent $\infty$-stacks over [[perfect ∞-stack]]s is in \begin{itemize}% \item [[David Ben-Zvi|Ben-Zvi]], [[John Francis]], [[David Nadler]], \emph{Integral transforms and Drinfeld centers in derived algebraic geometry} (\href{http://arxiv.org/abs/0805.0157}{arXiv}) \end{itemize} category: algebraic geometry [[!redirects quasicoherent ∞-stack]] [[!redirects quasicoherent ∞-stacks]] [[!redirects quasicoherent infinity-stacks]] [[!redirects quasicoherent (∞,1)-sheaf]] [[!redirects quasicoherent (∞,1)-sheaves]] [[!redirects quasicoherent (infinity,1)-sheaf]] [[!redirects quasicoherent (infinity,1)-sheaves]] \end{document}