\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{quasitopos} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{Topos Theory}}\label{topos_theory} [[!include topos theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{characterization}{Characterization}\dotfill \pageref*{characterization} \linebreak \noindent\hyperlink{extensivity_and_exactness}{Extensivity and exactness}\dotfill \pageref*{extensivity_and_exactness} \linebreak \noindent\hyperlink{internal_logic}{Internal logic}\dotfill \pageref*{internal_logic} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concept}{Related concept}\dotfill \pageref*{related_concept} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A quasitopos is a particular kind of [[category]] that has properties similar to that of a [[topos]], but is not quite a [[topos]]. A major difference is that it need not be [[balanced category|balanced]]: a [[morphism]] that is both [[monomorphism|monic]] and [[epimorphism|epic]] is not necessarily invertible. A quasitopos that is balanced is a topos. Instead of the usual [[subobject classifier]], it has a classifier only for \emph{[[strong monomorphism|strong]]} [[subobject]]s. It satisfies the uniqueness, but not the existence, part of the sheaf axioms ([[Elephant]] A2.6). Note that some of the literature definitions use the notion of a [[regular monomorphism]]. Since every regular monomorphism is as strong one, this article only uses [[strong monomorphism]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{udefn} A \textbf{quasitopos} is a [[finitely complete category|finitely complete]], [[finitely cocomplete category|finitely cocomplete]], [[locally cartesian closed category]] $E$ in which there exists an [[object]] $\Omega$ that classifies [[strong monomorphism|strong monomorphisms]]. \end{udefn} In particular, this means \begin{itemize}% \item Every finite [[limit]] and [[colimit]] exists; \item For each morphism $f: A \to B$, the [[base change|pullback functor]] between [[over category|slice quasitoposes]],\begin{displaymath} f^*: E/B \to E/A, \end{displaymath} admits a [[adjoint functor|right adjoint]]; \item There is a map $t: 1 \to \Omega$ such that every [[strong monomorphism]] $i: A \to X$ occurs as the [[pullback]] of $t$ along some unique morphism $\chi_i: X \to \Omega$:\begin{displaymath} \itexarray{ A & \to & 1\\ i \downarrow & & \downarrow t\\ X & \overset{\chi_i}{\to} & \Omega } \end{displaymath} \end{itemize} The object $\Omega$ above is sometimes called a \textbf{strong-subobject classifier}, since it classifies strong subobjects, but also sometimes called a \textbf{weak subobject classifier}, since it satisfies a weaker property than an ordinary [[subobject classifier]]. \begin{uremark} Equivalently, in addition to finite limits and colimits and local cartesian closure, one may ask only that there exists a classifier $t\colon 1\to\Omega$ as above for \emph{some} class $\mathcal{M}$ of [[monomorphisms]] which contains the [[regular monomorphisms]] and is closed under composition and pullback. From this one can show that every morphism factors as an epimorphism followed by a regular monomorphism (see \hyperlink{Wyler}{Wyler, proposition 12.5}). It then follows that every strong monomorphism is regular, and therefore $\mathcal{M}$ is precisely the class of strong monomorphisms. \end{uremark} \begin{uprop} Let $C$ be a category with two [[Grothendieck topologies]] $J$ and $K$ such that $J\subseteq K$. The [[full subcategory]] $BiSep(C,J,K) \hookrightarrow PSh(C)$ of the [[category of presheaves]] over $C$ consisting of the [[sheaves]] for $J$ that are also [[separated presheaves|separated]] for $K$ is a quasitopos. A category equivalent to such a category is called a \textbf{Grothendieck quasitopos}, by analogy with the notion of [[Grothendieck topos]]. \end{uprop} In particular, this includes the category of separated presheaves on a given site (if we take $J$ to be the trivial topology), and also includes all Grothendieck toposes (if we take $K=J$). Equivalently, a Grothendieck quasitopos is a category of the form $Sep_k(\mathbf{E})$, the category of $k$-separated objects for a [[Lawvere-Tierney topology]] $k$ on a Grothendieck topos $\mathbf{E}$. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{general}{}\subsubsection*{{General}}\label{general} \begin{lemma} \label{PushoutOfStrongMonos}\hypertarget{PushoutOfStrongMonos}{} \textbf{(pushout of strong monos)} In a quasitopos the [[pushout]] of a [[strong monomorphism]] is again a strong mono, and the resulting square is also a [[pullback]] square. \end{lemma} This appears as \hyperlink{Elephant}{Elephant, Lemma A.2.6.2}, using the synonym \emph{cocover} for \emph{strong monomorphism}. Since a [[topos]] is a quasitopos in which all monomorphisms are strong, this implies that the pushout of a mono in a topos is again a mono and that the resulting square is a pullback. Together with the fact that colimits are universal in a topos, this implies that a topos is an [[adhesive category]]. \begin{corollary} \label{}\hypertarget{}{} A quasitopos that is also a [[balanced category]] is a [[topos]]. \end{corollary} This is \hyperlink{Elephant}{Elephant, corollary 2.6.3}. \begin{lemma} \label{}\hypertarget{}{} A quasitopos has [[disjoint coproduct]]s precisely if the unique morphism $\emptyset \to *$ from the [[initial object]] to the [[terminal object]] is a [[strong monomorphism]]. \end{lemma} This is \hyperlink{Elephant}{Elephant, corollary 2.6.5}. \begin{defn} \label{}\hypertarget{}{} An [[object]] $C$ in a quasitopos is called \textbf{coarse} if for every [[bimorphism|monic epic]] morphism $f : A \to B$ every morphism $A \to C$ factors uniquely through $f$. \end{defn} So the coarse objects are those that see monic epic morphisms as [[isomorphism]]s, hence that do not see the failure of the quasitopos to be a [[balanced category]]. \begin{prop} \label{}\hypertarget{}{} In a quasitopos $\mathcal{E}$ the [[full subcategory]] on coarse objects is a [[topos]] and a [[reflective subcategory]] \begin{displaymath} Coarse(\mathcal{E}) \stackrel{\leftarrow}{\hookrightarrow} \mathcal{E} \,. \end{displaymath} \end{prop} This is \hyperlink{Elephant}{Elephant, prop 2.6.12}. \begin{lemma} \label{}\hypertarget{}{} If $\mathcal{E} \simeq SepPSh(C)$ is a Grothendieck quasitopos of [[separated presheaves]] on a [[site]] $C$, then $Coarse(\mathcal{E}) \simeq Sh(C)$ is the [[sheaf topos]] on $C$. \end{lemma} This is in \hyperlink{Elephant}{Elephant, section A4.4}. \hypertarget{characterization}{}\subsubsection*{{Characterization}}\label{characterization} There is a [[Giraud theorem]] characterizing Grothendieck quasitoposes: \begin{utheorem} Grothendieck quasitoposes are those quasitoposes which are [[locally small category|locally small]], [[cocomplete category|cocomplete]], and have a [[generating set]], or equivalently as the [[locally presentable categories]] which are locally cartesian closed and in which every \emph{strong} [[congruence]] has a [[effective quotient]]. \end{utheorem} see C2.2.13 of the (\hyperlink{Elephant}{Elephant}) \hypertarget{extensivity_and_exactness}{}\subsubsection*{{Extensivity and exactness}}\label{extensivity_and_exactness} A topos is always [[extensive category|extensive]] and [[exact category|exact]], but this is not the case for quasitopoi. A quasitopos is a [[coherent category]], since it has finite colimits which are stable under pullback (since it is locally cartesian closed), and so in particular its initial object is [[strict initial object|strict]], and it has finite coproducts which are pullback-stable, but they need not be disjoint: for objects $A$ and $B$, in the pullback \begin{displaymath} \itexarray{P & \overset{}{\to} & B\\ \downarrow && \downarrow\\ A & \underset{}{\to} & A+B} \end{displaymath} the object $P$ need not be initial. This is easy to see from the fact that any Heyting category is a quasitopos, since then $A+B$ is the join $A\vee B$, and so the pullback is the meet $A\wedge B$, which is not in general the bottom element. It is true, however, that such a $P$ is always a \emph{quotient} of the initial object, i.e. the unique map $0\to P$ is epic. If the map $0\to 1$ is strong monic, as it is in the ``topological'' examples, then $0$ can have no proper epimorphic images, and so coproducts are disjoint. The converse also holds, since if coproducts are disjoint then $0\to 1$ is an equalizer of the two injections $1\rightrightarrows 1+1$. A quasitopos with this property is sometimes called \textbf{solid}. More generally, in any quasitopos $E$, we can factor $0\to 1$ into an epic followed by a strong monic, $0\to \bar{0} \to 1$. One can prove that then the [[slice category]] $E/\bar{0}$ is a Heyting algebra (i.e. a posetal quasitopos), while the [[co-slice category]] $\bar{0}/E$ is a solid quasitopos, and moreover $E$ itself is recoverable via [[Artin gluing]] from a particular functor $E/\bar{0} \to \bar{0}/E$. Thus, to a certain extent, the only interest in the theory of quasitoposes, above and beyond the theory of Heyting algebras, is in the solid ones. By contrast, if a solid quasitopos is additionally [[exact category|exact]], and hence a [[pretopos]], then in particular it is [[balanced category|balanced]], which implies that it is in fact a topos. One can prove, however, that a quasitopos is always \emph{quasi-exact}, meaning that every \emph{strong} [[congruence]] has an [[effective quotient]]. \hypertarget{internal_logic}{}\subsubsection*{{Internal logic}}\label{internal_logic} Like a topos, a quasitopos has an [[internal logic]], for which the usual choice is to represent propositions by \emph{strong} subobjects. The resulting internal logic fails to satisfy the [[function comprehension principle]], forcing one to distinguish between [[functions]] and [[anafunctions]]. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item Any (elementary) [[topos]] is a quasitopos. The first two properties are known, and in a topos every monomorphism is strong, so the ordinary subobject classifier works. Conversely, if a quasitopos is also a [[balanced category]], then it is also a topos. \item Any [[Heyting algebra]] is a quasitopos. This is in notable contrast to the case of topoi, since no nontrivial poset is a topos. The crucial distinction is that every morphism in a poset is both monic and epic, but only the identities are strong monic or strong epic. \item The category of [[pseudotopological spaces]] is a quasitopos, as is the category of [[subsequential spaces]]. (The latter is Grothendieck, but not the former.) The category of [[topological spaces]] fails only to be locally cartesian closed. In such ``topological'' quasitopoi, the strong monics are the ``subspace inclusions'' (i.e. those monics whose source has the topology induced from the target), and the strong-subobject classifier is the two-point space with the indiscrete topology. (In particular, we cannot demand any sort of [[separation axiom]] and still have a quasitopos.) \item The category of [[marked simplicial set]]s. \item A category of [[concrete sheaves]] on a [[concrete site]] is a Grothendieck quasitopos. See [[local topos]]. This includes the following examples: \begin{itemize}% \item The category of [[simplicial complex|simplicial complexes]]. \item The category of [[diffeological space|diffeological spaces]]. \end{itemize} \item The following examples are categories of separated presheaves for the $\neg\neg$-topology on various presheaf toposes: \begin{itemize}% \item The category [[M-category\#def|Mono]] of [[monomorphisms]] between sets (as presheaves on the [[interval category]] - the [[Sierpinski topos]]). \item The category [[relation\#endorel|EndoRel or Bin]] of sets equipped with a [[relation]] (as presheaves on [[Quiv]] \begin{displaymath} G_1 = (0 \stackrel{\overset{s}{\to}}{\underset{t}{\to}} 1), \end{displaymath} a truncation of the [[globular category]]). \item The category of sets equipped with a reflexive relation (as presheaves on a truncated reflexive globular category). \item The category of sets equipped with a symmetric relation (as presheaves on the full subcategory of finite sets and injections consisting of just the objects $1$, $2$). \item The category of sets equipped with a reflexive symmetric relation (as presheaves on the full subcategory of finite sets consisting of just the objects $1$, $2$). See [[category of simple graphs]]. \end{itemize} \item The category of [[bornological set|bornological sets]]. \item The category of assemblies of a [[partial combinatory algebra]]. \item The category of Spanier's [[quasi-topological space|quasi-topological spaces]], the category of concrete sheaves on the site consisting of compact Hausdorff spaces with the finite covering topology. See \hyperlink{DE}{Dubuc-Espanol}. \end{itemize} \hypertarget{related_concept}{}\subsection*{{Related concept}}\label{related_concept} \begin{itemize}% \item \textbf{quasitopos} \item [[(∞,1)-quasitopos]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Original articles include \begin{itemize}% \item [[Jacques Penon]], \emph{Quasi-topos} , C.R. Acad. Sci. Paris \textbf{276} S\'e{}rie A (1973) pp.237--240. (\href{http://gallica.bnf.fr/ark:/12148/bpt6k6217213f/f251.image}{gallica}) \item [[Jacques Penon]], \emph{Sur le quasi-topos} , Cahiers Top. G\'e{}om. Diff. 18 (1977), 181--218. \end{itemize} Standard textbook references are \begin{itemize}% \item Oswald Wyler, \emph{Lecture Notes on Topoi and Quasitopoi} , World Scientific Singapore 1991. \end{itemize} \begin{itemize}% \item [[Peter Johnstone]], \emph{[[Sketches of an Elephant]]}, Oxford UP 2002. (section A2.6) \item J. Adamek, H. Herrlich, G. E. Strecker, \emph{Abstract and Concrete Categories} , Dover Mineola 2009. (Available online as \href{http://www.tac.mta.ca/tac/reprints/articles/17/tr17abs.html}{TAC Reprint no.17} (2006) pp.1-507; section 28) \end{itemize} Quasi-toposes of [[concrete sheaves]] are considered in \begin{itemize}% \item [[Eduardo Dubuc]], \emph{Concrete quasitopoi} , Lecture Notes in Math. 753 (1979), 239--254 \item [[Eduardo Dubuc]], L. Espanol, \emph{Quasitopoi over a base category} (\href{http://arxiv.org/abs/math.CT/0612727}{arXiv:math.CT/0612727}) \end{itemize} A review is in \begin{itemize}% \item [[John Baez]], [[Alex Hoffnung]], \emph{Convenient categories of smooth spaces}, to appear, Trans. AMS, (\href{http://arxiv.org/abs/0807.1704}{arXiv}) \end{itemize} More generally, quasi-[[sheaf toposes]] are discussed in \begin{itemize}% \item [[Richard Garner]], [[Stephen Lack]], \emph{Grothendieck quasitoposes} , arXiv:1106.5331 (2012). (\href{http://arxiv.org/abs/1106.5331}{abstract}) \end{itemize} [[!redirects quasitopoi]] [[!redirects quasitoposes]] [[!redirects quasi-topos]] [[!redirects quasi-topoi]] [[!redirects quasi-toposes]] [[!redirects quasi-exact category]] [[!redirects strong-subobject classifier]] [[!redirects weak subobject classifier]] [[!redirects Grothendieck quasitopos]] [[!redirects Grothendieck quasitoposes]] [[!redirects Grothendieck quasitopoi]] \end{document}