\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{quaternion-Kähler manifold} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{riemannian_geometry}{}\paragraph*{{Riemannian geometry}}\label{riemannian_geometry} [[!include Riemannian geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{as_part_of_the_berger_classification}{As part of the Berger classification}\dotfill \pageref*{as_part_of_the_berger_classification} \linebreak \noindent\hyperlink{as_riemannian_manifolds}{As $\mathbb{H}$-Riemannian manifolds}\dotfill \pageref*{as_riemannian_manifolds} \linebreak \noindent\hyperlink{as_quaternionic_manifolds}{As quaternionic manifolds}\dotfill \pageref*{as_quaternionic_manifolds} \linebreak \noindent\hyperlink{AsEinsteinManifolds}{As Einstein manifolds}\dotfill \pageref*{AsEinsteinManifolds} \linebreak \noindent\hyperlink{characteristic_classes}{Characteristic classes}\dotfill \pageref*{characteristic_classes} \linebreak \noindent\hyperlink{reduction_to_hyperkhler_structure}{Reduction to hyper-Kähler structure}\dotfill \pageref*{reduction_to_hyperkhler_structure} \linebreak \noindent\hyperlink{PositiveQuaternionKaehlerManifolds}{Positive quaternion-Kähler manifolds}\dotfill \pageref*{PositiveQuaternionKaehlerManifolds} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A [[Riemannian manifold]] $(X,g)$ of [[dimension]] $4n$ for $n \geq 2$ is called a \emph{quaternion-Kähler manifold} if its [[holonomy group]] is a [[subgroup]] of [[Sp(n).Sp(1)]] (where [[Sp(n)]] is the $n$th [[quaternionic unitary group]], and in particular $Sp(1) \simeq SU(2) \simeq$ [[Spin(3)]], and the [[central product]] is the [[quotient group]] of the [[direct product group]] by the [[diagonal]] [[center]] $\mathbb{Z}/2$). If the [[holonomy]] group is in fact a [[subgroup]] of just the $Sp(n)$-factor, one speaks of a \emph{[[hyperkähler manifold]]}. Quaternion-Kähler manifolds are necessarily [[Einstein manifolds]] (see \hyperlink{AsEinsteinManifolds}{below}). In particular their [[scalar curvature]] $R$ is [[constant function|constant]], and hence a [[real number]] $R \in \mathbb{R}$. If the scalar curvature is [[positive number|positive]], then one speaks of a \emph{positive quaternion-Kähler manifold}. $\backslash$linebreak \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{as_part_of_the_berger_classification}{}\subsubsection*{{As part of the Berger classification}}\label{as_part_of_the_berger_classification} [[!include special holonomy table]] \hypertarget{as_riemannian_manifolds}{}\subsubsection*{{As $\mathbb{H}$-Riemannian manifolds}}\label{as_riemannian_manifolds} [[!include normed division algebra Riemannian geometry -- table]] \hypertarget{as_quaternionic_manifolds}{}\subsubsection*{{As quaternionic manifolds}}\label{as_quaternionic_manifolds} \begin{example} \label{QuaternionKaehlermanifoldsAreQuaternionicManifolds}\hypertarget{QuaternionKaehlermanifoldsAreQuaternionicManifolds}{} \textbf{([[quaternion-Kähler manifolds]] are [[quaternionic manifolds]])} By definition, a [[quaternion-Kähler manifold]] $M$ has [[holonomy group]] contained in the [[direct product group]] [[Sp(n)]]$\times$[[Spin(3)|Sp(1)]], admitting an extension of the [[Levi-Civita connection]] $\nabla$ on the holonomy bundle as [[torsion of a G-structure|torsion]]-free. Thus a quaternion-Kähler manifold is automatically a [[quaternionic manifold]]. Such extension $\nabla_\text{quat}$ of $\nabla$ however is not unique, since $\nabla_\text{quat} + \mathcal{S}$ is another Sp(n)Sp(1)-preserving connection, where $\mathcal{S}$ is a (1, 2)-tensor such that for every $p \in M$, $\mathcal{S}(p)$ takes values in the first [[prolongation]] of the [[Lie algebra]] for the [[G-structure]]. \end{example} \hypertarget{AsEinsteinManifolds}{}\subsubsection*{{As Einstein manifolds}}\label{AsEinsteinManifolds} [[quaternion-Kähler manifolds]] are [[Einstein manifolds]] (e.g. \hyperlink{Cortes05}{Cortés 05, slide 22}) \hypertarget{characteristic_classes}{}\subsubsection*{{Characteristic classes}}\label{characteristic_classes} \begin{prop} \label{CharacteristicClassesForSpin5Spin3Structure}\hypertarget{CharacteristicClassesForSpin5Spin3Structure}{} Let $X$ be a [[closed manifold|closed]] [[smooth manifold]] of [[dimension]] 8 with [[Spin structure]]. If the [[frame bundle]] moreover admits [[G-structure]] for $\;\;G =$ [[Sp(n).Sp(1)|Sp(2).Sp(1)]] $\hookrightarrow$ [[SO(8)]] then the [[Euler class]] $\chi$, the [[second Pontryagin class]] $p_2$ and the [[cup product]]-square $(p_1)^2$ of the [[first Pontryagin class]] of the [[frame bundle]]/[[tangent bundle]] are related by \begin{equation} 8 \chi \;=\; 4 p_2 - (p_1)^2 \,. \label{EulerClassInTermsOfPontryagin}\end{equation} \end{prop} (\hyperlink{CadekVanzura98}{Čadek-Vanžura 98, Theorem 8.1 with Remark 8.2}) \begin{remark} \label{}\hypertarget{}{} The same conclusion \eqref{EulerClassInTermsOfPontryagin} also holds for $Spin(7)$-structure, see \href{Spin7-manifold#CharacteristicClassesForSpinStructure}{there} \end{remark} See also at \emph{[[C-field tadpole cancellation]]}. \hypertarget{reduction_to_hyperkhler_structure}{}\subsubsection*{{Reduction to hyper-Kähler structure}}\label{reduction_to_hyperkhler_structure} A quaternion-Kähler manifold $(X,g)$ is a [[hyper-Kähler manifold]], hence has $Sp(n) \hookrightarrow Sp(n)\cdot Sp(1)$-structure, precisely if its [[scalar curvature]], which is a [[constant function|constant]] by $(X,g)$ being an [[Einstein manifold]], vanishes: $R(g) = 0$. (e.g. \hyperlink{Amann09}{Amann 09, below Def. 1.5}) \hypertarget{PositiveQuaternionKaehlerManifolds}{}\subsubsection*{{Positive quaternion-Kähler manifolds}}\label{PositiveQuaternionKaehlerManifolds} \begin{defn} \label{PositiveQuaternionKaehlerManifold}\hypertarget{PositiveQuaternionKaehlerManifold}{} A quaternion-Kähler manifold $(X,g)$ is called \emph{positive} if \begin{enumerate}% \item it is a [[geodesically complete]] \item its [[scalar curvature]], which is a [[constant function|constant]] by $(X,g)$ being an [[Einstein manifold]], is a [[positive number]], $R(g) \gt 0$. \end{enumerate} \end{defn} (\hyperlink{Salamon82}{Salamon 82, Section 6}, see e.g. \hyperlink{Amann09}{Amann 09, Def. 1.5}) \begin{prop} \label{}\hypertarget{}{} A [[connected topological space|connected]] [[positive quaternion-Kähler manifold]] (Def. \ref{PositiveQuaternionKaehlerManifold}) is necessarily [[compact topological space|compact]]. \end{prop} (\hyperlink{Salamon82}{Salamon 82, p. 158 (16 of 29)}) \begin{prop} \label{}\hypertarget{}{} A [[connected topological space|connected]] [[positive quaternion-Kähler manifold]] (Def. \ref{PositiveQuaternionKaehlerManifold}) is necessarily [[simply connected topological space|simply connected]]. \end{prop} (\hyperlink{Salamon82}{Salamon 82, Theorem 6.6}) \begin{prop} \label{}\hypertarget{}{} For each [[dimension]] $dim(X)$ there is a [[finite number]] of [[isometry]] [[isomorphism class|classes]] of [[positive quaternion-Kähler manifolds]] (Def. \ref{PositiveQuaternionKaehlerManifold}). \end{prop} (\hyperlink{LeBrunSalamon94}{LeBrun-Salamon 94, Theorem 0.1}) \begin{prop} \label{WoldSpacesArePositiveQuaternionKaehler}\hypertarget{WoldSpacesArePositiveQuaternionKaehler}{} (\textbf{[[Wolf spaces]] are [[positive quaternion-Kähler manifolds]])} Every [[Wolf space]] is a [[positive quaternion-Kähler manifold]]. \end{prop} In fact the [[Wolf spaces]] are the only known examples of [[positive quaternion-Kähler manifold]] (which is not hyper-Kähler ?!), as of today (e.g. \hyperlink{Salamon82}{Salamon 82, Section 5}). This leads to the \textbf{conjecture} that in every dimension, the [[Wolf spaces]] are the only [[positive quaternion-Kähler manifolds]]. The conjecture has been proven for the following [[dimensions]] \begin{itemize}% \item $d = 4$ (Hitchin) \item $d = 8$ (\hyperlink{PoonSalamon91}{Poon-Salamon 91}, \hyperlink{LeBrunSalamon94}{LeBrun-Salamon 94}) \end{itemize} $\backslash$linebreak \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} The archetypical example is \begin{itemize}% \item [[quaternionic projective space]] $\mathbb{H}P^2$ \end{itemize} This is the first of the list of examples of spaces that are both [[quaternion-Kähler manifolds]] as well as a [[symmetric spaces]], called \emph{[[Wolf spaces]]}. See around Prop. \ref{WoldSpacesArePositiveQuaternionKaehler} above. $\backslash$linebreak \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[quaternionic manifold]], [[Kähler manifold]], [[hyper-Kähler manifold]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Original articles: \begin{itemize}% \item [[Simon Salamon]], \emph{Quaternionic Kähler manifolds}, Invent Math (1982) 67: 143. (\href{https://doi.org/10.1007/BF01393378}{doi:10.1007/BF01393378}) \item Y. S. Poon, [[Simon Salamon]], \emph{Quaternionic Kähler 8-manifolds with positive scalar curvature}, J. Differential Geom. Volume 33, Number 2 (1991), 363-378 (\href{https://projecteuclid.org/euclid.jdg/1214446322}{euclid:1214446322}) \item Claude LeBrun, [[Simon Salamon]], \emph{Strong rigidity of positive quaternion Kähler manifolds}, Inventiones Mathematicae 118, 1994, 109–132 (\href{https://eudml.org/doc/144231}{dml:144231}, \href{https://doi.org/10.1007/BF01231528}{doi:10.1007/BF01231528}) \end{itemize} Exposition \begin{itemize}% \item [[Vicente Cortés]], \emph{Quaternionic Kähler manifolds}, 2005 (\href{https://www2.math.hu-berlin.de/gradkoll/Cortes_vorlesung1_handout.pdf}{pdf}) \end{itemize} Textbook references include: \begin{itemize}% \item [[Arthur Besse]], \emph{Einstein Manifolds}, Springer-Verlag 1987. \item [[Dominic Joyce]], \emph{Compact Manifolds with Special Holonomy}, Oxford University Press, 2000. \end{itemize} See also \begin{itemize}% \item Wikipedia, \emph{\href{https://en.wikipedia.org/wiki/Quaternion-Kaehler_manifold}{Quaternion-K\"a{}hler manifold}} \end{itemize} Articles discussing quaternion-Kähler [[holonomy]], [[connection]], and relation to other [[hypercomplex]] structures: \begin{itemize}% \item Andrei Moroianu, [[Uwe Semmelmann]], ``Killing Forms on Quaternion-Kähler Manifolds'', Annals of Global Analysis and Geometry, November 2005, Volume 28, Issue 4, pp 319–335. \item Pedersen, Poon, and Swann. ``Hypercomplex structures associated to quaternionic manifolds'', Differential Geometry and its Applications (1998) 273-293 North-Holland. \item [[Misha Verbitsky]], ``Hyperkähler manifolds with torsion, supersymmetry and Hodge theory'', Asian J. Math, V. 6 No. 4, pp. 679-712, Dec. 2002. \item [[Simon Salamon]], \emph{Differential Geometry of Quaternionic Manifolds}, Annales scientifiques de l’É.N.S. 4e série, tome 19, no 1 (1986), p. 31-55 (\href{http://www.numdam.org/item/ASENS_1986_4_19_1_31_0/}{numdam:ASENS\_1986\_4\_19\_1\_31\_0}) \end{itemize} See also \begin{itemize}% \item Claude LeBrun, \emph{On complete quaternionic-Kähler manifolds}, Duke Math. J. Volume 63, Number 3 (1991), 723-743 (\href{https://projecteuclid.org/euclid.dmj/1077296077}{euclid:1077296077}) \item Simon G. Chiossi, Óscar Maciá, \emph{SO(3)-Structures on 8-manifolds}, Ann. Glob. Anal. Geom. 43 (1) (2013), 1--18 (\href{https://arxiv.org/abs/1105.1746}{arXiv:1105.1746}) \end{itemize} On [[positive quaternion-Kähler manifolds]] \begin{itemize}% \item Amann, \emph{Positive Quaternion Kähler Manifolds}, 2009 (\href{https://d-nb.info/996176438/34}{pdf}) \item Amann, \emph{Partial Classification Results for Positive Quaternion Kaehler Manifolds} (\href{https://arxiv.org/abs/0911.4587}{arXiv:0911.4587}) \end{itemize} Discussion of [[characteristic classes]]: \begin{itemize}% \item [[Martin Čadek]], [[Jiří Vanžura]], \emph{Almost quaternionic structures on eight-manifolds}, Osaka J. Math. Volume 35, Number 1 (1998), 165-190 (\href{https://projecteuclid.org/euclid.ojm/1200787905}{euclid:1200787905}) \end{itemize} [[!redirects quaternion-Kähler manifolds]] [[!redirects quaternion Kähler manifold]] [[!redirects quaternion Kähler manifols]] [[!redirects quaternion-Kaehler manifold]] [[!redirects quaternion-Kaehler manifolds]] [[!redirects quaternion Kaehler manifold]] [[!redirects quaternion Kaehler manifolds]] [[!redirects quaternionic Kähler manifold]] [[!redirects quaternionic Kähler manifolds]] [[!redirects quaternionic-Kähler manifold]] [[!redirects quaternionic-Kahler manifold]] [[!redirects quaternionic-Kähler manifolds]] [[!redirects quaternionic-Kahler manifolds]] [[!redirects quaternion-Kähler structure]] [[!redirects quaternion-Kähler structures]] [[!redirects quaternion-Kaehler structure]] [[!redirects quaternion-Kaehler structures]] [[!redirects quaternion Kähler structure]] [[!redirects quaternion Kähler structures]] [[!redirects quaternion Kaehler structure]] [[!redirects quaternion Kaehler structures]] [[!redirects Sp(2).Sp(1)-structure]] [[!redirects Sp(2).Sp(1)-structures]] [[!redirects Sp(2).Sp(1) structure]] [[!redirects Sp(2).Sp(1) structures]] [[!redirects positive quaternion-Kähler manifolds]] [[!redirects positive quaternion Kähler manifold]] [[!redirects positive quaternion Kähler manifols]] [[!redirects positive quaternion-Kähler manifold]] [[!redirects positive quaternion-Kähler manifols]] [[!redirects positive quaternion-Kaehler manifold]] [[!redirects positive quaternion-Kaehler manifolds]] [[!redirects positive quaternion Kaehler manifold]] [[!redirects positive quaternion Kaehler manifolds]] [[!redirects positive quaternionic Kähler manifold]] [[!redirects positive quaternionic Kähler manifolds]] [[!redirects positive quaternionic-Kähler manifold]] [[!redirects positive quaternionic-Kahler manifold]] [[!redirects positive quaternionic-Kähler manifolds]] [[!redirects positive quaternionic-Kahler manifolds]] [[!redirects positive quaternion-Kähler structure]] [[!redirects positive quaternion-Kähler structures]] [[!redirects quaternion-Kaehler structure]] [[!redirects quaternion-Kaehler structures]] [[!redirects quaternion Kähler structure]] [[!redirects quaternion Kähler structures]] [[!redirects quaternion Kaehler structure]] [[!redirects quaternion Kaehler structures]] \end{document}