\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{quaternionic Hopf fibration} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{bundles}{}\paragraph*{{Bundles}}\label{bundles} [[!include bundles - contents]] \hypertarget{topology}{}\paragraph*{{Topology}}\label{topology} [[!include topology - contents]] \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{EquivariantStructure}{$SO(3)$- and $Spin(5)$-Equivariant structure}\dotfill \pageref*{EquivariantStructure} \linebreak \noindent\hyperlink{ClassInTheHomotopyGroupsOfSpheres}{Class in the homotopy groups of spheres}\dotfill \pageref*{ClassInTheHomotopyGroupsOfSpheres} \linebreak \noindent\hyperlink{ClassInEquivariantStableHomotopyTheory}{Class in equivariant stable homotopy theory}\dotfill \pageref*{ClassInEquivariantStableHomotopyTheory} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{quaternionic Hopf fibration} is the [[Hopf fibration]] induced by the [[quaternions]], hence it is the [[fibration]] \begin{displaymath} \itexarray{ S^3 &\hookrightarrow& S^7 \\ && \downarrow^{\mathrlap{p_{\mathbb{H}}}} \\ && S^4 } \end{displaymath} of the [[7-sphere]] over the [[4-sphere]] with [[fiber]] the [[3-sphere]], which is induced via the [[Hopf construction]] from the product operation \begin{displaymath} \mathbb{H} \times \mathbb{H} \stackrel{(-)\cdot (-)}{\longrightarrow} \mathbb{H} \end{displaymath} on the [[quaternions]], or else from \begin{displaymath} \mathbb{H} \times \mathbb{H}^{\times} \stackrel{(-)\cdot (-)^{-1}}{\longrightarrow} \mathbb{H} \end{displaymath} to match standard conventions. This means that if $S^7$ is regarded as the [[unit sphere]] $\{(x,y) | {\vert x\vert}^2 + {\vert y\vert}^2 = 1\}$ in $\mathbb{H}\times \mathbb{H}$ and $S^4$ is regarded as the quaternionic [[projective space]], then $p$ is given (on points $(x,y)$ with $y \neq 0$) simply by \begin{displaymath} p_{\mathbb{H}} \colon (x,y) \mapsto [x;y] = [x/y; 1] \,, \end{displaymath} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{EquivariantStructure}{}\subsubsection*{{$SO(3)$- and $Spin(5)$-Equivariant structure}}\label{EquivariantStructure} Since the [[automorphism group]] of the [[quaternions]], as an $\mathbb{R}$-[[associative algebra|algebra]], is the [[special orthogonal group]] $SO(3)$ \begin{displaymath} \mathrm{Aut}_{\mathbb{R}}(\mathbb{H}) \simeq SO(3) \end{displaymath} acting by [[rotation]] of the imaginary quaternions, via the [[Hopf construction]] it follows that the 7-sphere and 4-sphere inherit $SO(3)$-[[actions]] under which the quaternionic Hopf map is equivariant. Notice that this means that $SO(3)$ acts on $S^7$ here diagonally on the \emph{two} copies of the imaginary octonions in $S^7 \hookrightarrow \mathbb{H} \oplus \mathbb{H}$ (as opposed to, say, via any one of the embeddings $SO(3) \hookrightarrow SO(8)$ and the following canonical action of $SO(8)$ on $S^7 \hookrightarrow \mathbb{R}^8$). (see also \hyperlink{CookCrabb93}{Cook-Crabb 93}) But in fact more is true: \begin{prop} \label{Spin5EquivarianceOfQuaternionicHopfFibration}\hypertarget{Spin5EquivarianceOfQuaternionicHopfFibration}{} \textbf{([[Spin(5)]]-[[action|equivariance]] of [[quaternionic Hopf fibration]])} Consider \begin{enumerate}% \item the [[Spin(5)]]-[[action]] on the [[4-sphere]] $S^4$ which is induced by the defining action on $\mathbb{R}^5$ under the identification $S^4 \simeq S(\mathbb{R}^5)$; \item the [[Spin(5)]]-action on the [[7-sphere]] $S^7$ which is induced under the exceptional [[isomorphism]] $Spin(5) \simeq Sp(2) = U(2,\mathbb{H})$ (this Prop. $\backslash$ref\{Spin(5)\#ExceptionalIsoToSp2\}) by the canonical left action of $U(2,\mathbb{H})$ on $\mathbb{H}^2$ via $S^7 \simeq S(\mathbb{H}^2)$. \end{enumerate} Then the [[quaternionic Hopf fibration]] $S^7 \overset{h_{\mathbb{H}}}{\longrightarrow} S^4$ is [[equivariant]] with respect to these [[actions]]. \end{prop} This appears as (\hyperlink{GluckWarnerZiller86}{Gluck-Warner-Ziller 86, Prop. 4.1}). The statement is also almost explicit in \hyperlink{Porteous95}{Porteous 95, p. 263} $\backslash$begin\{center\} $\backslash$begin\{imagefromfile\} ``file\_name'': ``Spin5OnHopfH.jpg'', ``width'': 280 $\backslash$end\{imagefromfile\} $\backslash$end\{center\} A way to make the $Spin(5)$-equivariance of the quaternionic Hopf fibration fully explicit is to observe that the quaternionic Hopf fibration is equivalently the following map of [[coset spaces]]: \begin{displaymath} \itexarray{ S^3 &\overset{fib(h_{\mathbb{H}})}{\longrightarrow}& S^{7} &\overset{h_{\mathbb{H}}}{\longrightarrow}& S^4 \\ = && = && = \\ \frac{Spin(4)}{Spin(3)} &\longrightarrow& \frac{Spin(5)}{Spin(3)} &\longrightarrow& \frac{Spin(5)}{Spin(4)} } \end{displaymath} (\hyperlink{HasudaTomizawa09}{Hasuda-Tomizawa 09, table 1}) \begin{remark} \label{}\hypertarget{}{} Of the resulting [[action]] of [[Sp(2)]]$\times$[[Sp(1)]] on the [[7-sphere]] (from Prop. \ref{Spin5EquivarianceOfQuaternionicHopfFibration}), only the [[quotient group]] [[Sp(2).Sp(1)]] acts [[effective action|effectively]]. \end{remark} \hypertarget{ClassInTheHomotopyGroupsOfSpheres}{}\subsubsection*{{Class in the homotopy groups of spheres}}\label{ClassInTheHomotopyGroupsOfSpheres} The quaternionic Hopf fibration gives an element in the 7th [[homotopy groups of spheres|homotopy group of the 4-sphere]] \begin{displaymath} [p_{\mathbb{H}}] \in \pi_7(S^4) \simeq \mathbb{Z} \times (\mathbb{Z}/12) \end{displaymath} and in fact it is a generator of the non-torsion factor in this group. Stably, i.e. as a generator for the [[stable homotopy groups of spheres]] in degree $7-4 = 3$, the quaternionic Hopf map becomes a [[torsion subgroup|torsion]] generator \begin{displaymath} [p_{\mathbb{H}}] \in \pi_3^S \simeq \mathbb{Z}/24 \,,. \end{displaymath} \hypertarget{ClassInEquivariantStableHomotopyTheory}{}\subsubsection*{{Class in equivariant stable homotopy theory}}\label{ClassInEquivariantStableHomotopyTheory} Fix a [[finite group|finite]] [[subgroup]] $G \hookrightarrow SO(3)$ which does not come from $SO(2) \hookrightarrow SO(3)$ -- i.e. not a [[cyclic group]], but one of the [[dihedral groups]] or else the [[tetrahedral group]] or [[octahedral group]] or [[icosahedral group]] (by the [[ADE classification]]). Regard both $S^7$ and $S^4$ as pointed [[topological G-spaces]] via the $SO(3)$-action induced via automorphisms of the quaternions, as \hyperlink{EquivariantStructure}{above}. Write \begin{displaymath} \Sigma^\infty_G S^7, \Sigma^\infty_G S^4 \in G Spectra \end{displaymath} for the corresponding [[equivariant suspension spectra]]. Notice that if we took trivial $G$, then in the [[stable homotopy category]] \begin{displaymath} [\Sigma^\infty S^7, \Sigma^\infty S^4] \simeq \mathbb{Z}/24 \end{displaymath} by the \hyperlink{ClassInTheHomotopyGroupsOfSpheres}{above}. In contrast:\footnote{The proof of prop. \ref{QuaternionicHopfFibrationIsDEEquivariantlyStablyNonTorsion} profited from [[Charles Rezk]], who suggested \href{http://mathoverflow.net/a/224185/381}{here} that the reduction to fixed points will make the real Hopf fibration give a non-torsion contribution, and from [[David Barnes]] who amplified the use of the Greenless-May splitting theorem.} \begin{prop} \label{QuaternionicHopfFibrationIsDEEquivariantlyStablyNonTorsion}\hypertarget{QuaternionicHopfFibrationIsDEEquivariantlyStablyNonTorsion}{} In $G$-[[equivariant homotopy theory]] this becomes a non-[[torsion subgroup|torsion group]], i.e. \begin{displaymath} [\Sigma^\infty_G S^7, \Sigma^\infty_G S^4]_G \simeq \mathbb{Z} \oplus \cdots \end{displaymath} with the quaternionic Hopf fibration, regarded as a $G$-equivariant map, representing a non-torsion element. \end{prop} \begin{proof} First use the \href{rational+equivariant+stable+homotopy+theory#SplittingIntoMackeyFunctors}{Greenlees-May decomposition} which says that for any two $G$-[[equivariant spectra]] $X,Y$ and writing $\pi_\bullet(X), \pi_\bullet(Y)$ for their [[equivariant homotopy groups]], organized as [[Mackey functors]] $H \mapsto \pi_n^H(X)$ for all subgroups $H \subset G$, then the canonical map \begin{displaymath} [X,Y]_G \longrightarrow \underset{n}{\oplus} Hom_{\mathcal{M}[G]}(\pi_n(X), \pi_n(Y)) \end{displaymath} is [[rational equivariant stable homotopy theory|rationally]] an [[isomorphism]]. With this we are reduced to showing that there exists $n \in \mathbb{Z}$ and a morphism of [[Mackey functors]] of [[equivariant homotopy groups]] $\pi_n(\Sigma^\infty_G S^7) \to \pi_n(\Sigma^\infty_G S^4)$ which is not a torsion element in the abelian [[hom-object|hom-group]] of Mackey functors. To analyse this, we use the [[tom Dieck splitting]] which says that the [[equivariant homotopy groups]] of [[equivariant suspension spectra]] $\Sigma^\infty_G X$ contain a [[direct sum|direct summand]] which is simply the ordinary stable homotopy groups of the naive [[fixed point]] space $X^H$: \begin{displaymath} \pi_n^H(\Sigma^\infty_G X) \simeq \pi_n(\Sigma^\infty (X^H)) \oplus \cdots \,. \end{displaymath} Now observe that the [[fixed points]] of the $SO(3)$-action on the quaternionic Hopf fibration that we are considering is just the [[real Hopf fibration]]: \begin{displaymath} (p_{\mathbb{H}})^{SO(3)} = p_{\mathbb{R}} \;\colon\; S^1 \longrightarrow S^1 \end{displaymath} since $SO(3)$ acts transitively on the quaternionic quaternions and fixes the real quaternions. By our assumption that $G \subset SO(3)$ does not come through $SO(2) \hookrightarrow SO(3)$ it follows that this statment is still true for $G$: \begin{displaymath} (p_{\mathbb{H}})^{G} = p_{\mathbb{R}} \;\colon\; S^1 \longrightarrow S^1 \,. \end{displaymath} But the [[real Hopf fibration]] defines a non-torsion element in $\pi_0^S \simeq \mathbb{Z}$. In conclusion then, at $n = 1$ and $H = G$ we find that the $G$-equivariant quaternionic Hopf fibration contributes a non-torsion element in \begin{displaymath} Hom_{Ab}(\pi_1^G(\Sigma^\infty_G S^7), \pi_1^G(\Sigma^\infty_G S^4)) \end{displaymath} which appears as a non-torsion element in \begin{displaymath} Hom_{\mathcal{M}[G]}( \pi_1(\Sigma^\infty_G S^7), \pi_1(\Sigma^\infty_G S^4) ) \end{displaymath} and hence in $[\Sigma^\infty_G S^7, \Sigma^\infty_G S^4]_G$. \end{proof} See also at \emph{[[equivariant stable cohomotopy]]} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[real Hopf fibration]] \item [[complex Hopf fibration]] \item [[octonionic Hopf fibration]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item Herman Gluck, Frank Warner, Wolfgang Ziller, \emph{The geometry of the Hopf fibrations}, L'Enseignement Math\'e{}matique, t.32 (1986), p. 173-198 (\href{https://www.researchgate.net/publication/266548925_The_geometry_of_the_Hopf_fibrations}{ResearchGate}) \item [[Reiko Miyaoka]], \emph{The linear isotropy group of $G_2/SO(4)$, the Hopf fibering and isoparametric hypersurfaces}, Osaka J. Math. Volume 30, Number 2 (1993), 179-202. (\href{http://projecteuclid.org/euclid.ojm/1200784357}{Euclid}) \item [[Ian Porteous]], \emph{Clifford Algebras and the Classical Groups}, Cambridge Studies in Advanced Mathematics, Cambridge University Press (1995) \item Machiko Hatsuda, Shinya Tomizawa, \emph{Coset for Hopf fibration and Squashing}, Class.Quant.Grav.26:225007, 2009 (\href{https://arxiv.org/abs/0906.1025}{arXiv:0906.1025}) \end{itemize} Discussion in [[parameterized homotopy theory]] includes \begin{itemize}% \item A. L. Cook, M.C. Crabb, \emph{Fiberwise Hopf structures on sphere bundles}, J. London Math. Soc. (2) 48 (1993) 365-384 (\href{http://www.maths.ed.ac.uk/~aar/papers/crabbcook.pdf}{pdf}) \item Kouyemon Iriye, \emph{Equivariant Hopf structures on a sphere}, J. Math. Kyoto Univ. Volume 35, Number 3 (1995), 403-412 (\href{http://projecteuclid.org/euclid.kjm/1250518704}{Euclid}) \end{itemize} Discussion in [[homotopy type theory]] is in \begin{itemize}% \item [[Ulrik Buchholtz]], [[Egbert Rijke]], \emph{The Cayley-Dickson Construction in Homotopy Type Theory} (\href{https://arxiv.org/abs/1610.01134}{arXiv:1610.01134}) \end{itemize} Noteworthy [[fiber products]] with the quaternionic Hopf fibration, notably [[exotic 7-spheres]], are discussed in \begin{itemize}% \item Llohann D. Sperança, \emph{Explicit Constructions over the Exotic 8-sphere} (\href{https://www.ime.unicamp.br/~rigas/sigma8EncontroTopol.pdf}{pdf}, [[SperancaExoticSpheres.pdf:file]]) \end{itemize} \end{document}