\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{quaternionic manifold} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{riemannian_geometry}{}\paragraph*{{Riemannian geometry}}\label{riemannian_geometry} [[!include Riemannian geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{holonomy}{Holonomy}\dotfill \pageref*{holonomy} \linebreak \noindent\hyperlink{twistor_space_of_a_quaternionic_manifold}{Twistor Space of a Quaternionic Manifold}\dotfill \pageref*{twistor_space_of_a_quaternionic_manifold} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} There is some variation in the literature on what one calls a ``[[quaternionic]] [[manifold]]''. The most general definition, however, encompassing all the others, is: \begin{defn} \label{QuaternionicManifold}\hypertarget{QuaternionicManifold}{} \textbf{(Quaternionic manifold)} For $n \geq 2$, a \textbf{quaternionic manifold} is a real 4n-dimensional manifold M with a $\text{GL} (n,\mathbf{H})\cdot \mathbf{H} ^{\times }$-[[G-structure|structure]] which admits a [[torsion of a G-structure|torsion-free]] [[connection]] $\nabla$ (i.e. is integrable as a [[G-structure]]). \end{defn} When $\nabla$ does not exist $M$ is called \emph{almost quaternionic}, and this is just a [[reduction of the structure group]] of $M$ along a [[Lie group]] inclusion $\text{GL}(n, \mathbf{H}) \hookrightarrow \text{GL}(4n, \mathbf{R})$. Note that the multiplicative group of the quaternions $\mathbf{H}^{\times}$ can be normalized, so that the second factor of $\text{GL} (n,\mathbf{H})\cdot \mathbf{H} ^{\times }$ is isomorphic to SU(2), or isomorphically again the first quaternionic unitary group Sp(1). Hence one occasionally finds the structure group reduction written $\text{GL} (n,\mathbf{H})\cdot \text{Sp}(1)$. \begin{defn} \label{}\hypertarget{}{} Other definitions have been given, based on the following useful but more naïve reasoning: consider two [[almost complex structures]] on a smooth $4n$-manifold $M$, say $\langle M, I \rangle$ and $\langle M, J \rangle$, given the relation $\{ I, J \} =0$. Then call the structure $\langle M, I, J \rangle$ ``almost quaternionic'', and a map $\varphi: \langle M, I, J \rangle \rightarrow \langle N, K, F \rangle$ of almost quaternionic structures ``quaternionic'' if it is separately [[complex analytic]] as a map $\langle M, I \rangle \rightarrow \langle N, K \rangle$ and also as a map $\langle M, J \rangle \rightarrow \langle N, F \rangle$. When $\mathbf{R}^4$ is given a quaternionic multiplication with anti-commuting imaginary units $i$ and $j$, this is actually equivalent to $\varphi : \mathbf{R}^4 \rightarrow \mathbf{R}^4$ satisfying the [[Cauchy-Feuter]] complex: \begin{displaymath} i \frac{\partial}{\partial u_3} = \frac{\partial }{\partial u _4}, j \frac{\partial }{ \partial u_2} = \frac{\partial }{\partial u_4} \end{displaymath} \begin{displaymath} i \frac{\partial}{\partial u_1} = \frac{\partial }{\partial u_2}, j \frac{\partial }{\partial u_1 } = \frac{\partial }{\partial u_3} \end{displaymath} known as a starting point for defining a notion of ``quaternionic [[holomorphy]]'', since the Cauchy-Feuter complex consists of two separate [[Cauchy-Riemann]] systems in the imaginary units $i, j$. Such a complex exists on $\mathbf{R}^{4n}$ for any $n$ as an extended Cauchy-Fueter complex consisting of the systems above, repeated for each set of four coordinates. Hence, $\mathbf{R}^{4n}$ as a smooth manifold can always be endowed with an almost quaternionic structure. On this account of quaternionic structure, a \emph{quaternionic $n$-manifold} is then an almost quaternionic structure on a smooth manifold $M$ such that $M$ has an atlas of quaternionic maps, considered with respect to the standard quaternionic structure on $\mathbf{R}^{4n}$ just described. However, such a definition has serious drawbacks, such as the fact that quaternionic projective $n$-space $\mathbf{H}P^n := \text{Sp}(n + 1)/\text{Sp}(n)\text{Sp}(1)$ is not a ``quaternionic manifold'' in this sense for any $n$. It is, however, a quaternionic manifold under the official definition above. \end{defn} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{example} \label{QuaternionKaehlermanifoldsAreQuaternionicManifolds}\hypertarget{QuaternionKaehlermanifoldsAreQuaternionicManifolds}{} \textbf{([[quaternion-Kähler manifolds]] are [[quaternionic manifolds]])} By definition, a [[quaternion-Kähler manifold]] $M$ has [[holonomy group]] contained in the [[direct product group]] [[Sp(n)]]$\times$[[Spin(3)|Sp(1)]], admitting an extension of the [[Levi-Civita connection]] $\nabla$ on the holonomy bundle as torsion-free. Thus a quaternion-Kähler manifold is automatically quaternionic. Such extension $\nabla_\text{quat}$ of $\nabla$ however is not unique, since $\nabla_\text{quat} + \mathcal{S}$ is another Sp(n)Sp(1)-preserving connection, where $\mathcal{S}$ is a (1, 2)-tensor such that for every $p \in M$, $\mathcal{S}(p)$ takes values in the first [[prolongation]] of the [[Lie algebra]] for the [[G-structure]]. \end{example} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{holonomy}{}\subsubsection*{{Holonomy}}\label{holonomy} (\ldots{}) \hypertarget{twistor_space_of_a_quaternionic_manifold}{}\subsubsection*{{Twistor Space of a Quaternionic Manifold}}\label{twistor_space_of_a_quaternionic_manifold} (\ldots{}) \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[biquaternionic manifold]], [[hypercomplex manifold]], \item [[quaternionic-Kähler manifold]] \item [[Kähler manifold]], [[hyper-Kähler manifold]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Book references include: \begin{itemize}% \item [[Arthur Besse]], \emph{Einstein Manifolds}, Springer-Verlag 1987. \item [[Dominic Joyce]], \emph{Compact Manifolds with Special Holonomy}, Oxford University Press, 2000. \end{itemize} Classical references: \begin{itemize}% \item [[Edmond Bonan]], ``Sur les G-structures de type quaternionien'', Cahiers de topologie et géométrie différentielle catégoriques, tome 9, no 4 (1967), p. 389-463. \item S.M. Salamon, ``Differential Geometry of Quaternionic Manifolds'', Annales scientifiques de l’É.N.S. 4e série, tome 19, no 1 (1986), p. 31-55. \item [[Dmitry Alekseevsky]] and [[Stefano Marchiafava]], ``Quaternionic-like structures on a manifold - note I. 1-integrability and integrability conditions'', Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 4 (1993), n.1, p. 43–52. \end{itemize} Holonomy, connections, and twistor spaces: \begin{itemize}% \item Stefan Ivanov, Ivan Minchev, Simeon Zamkovoy, \href{https://arxiv.org/abs/math/0511525}{Twistors of Almost Quaternionic Manifolds} \item Gueo Grantcharov and Yat Sun Poon, \href{https://arxiv.org/abs/math/9908015v1}{Geometry of Hyper-Kahler Connections with Torsion} \end{itemize} See also \begin{itemize}% \item Wikipedia, \emph{\href{https://en.wikipedia.org/wiki/Quaternionic_manifold}{Quaternionic manifold}} \end{itemize} [[!redirects quaternionic manifolds]] [[!redirects quaternion manifold]] \end{document}