\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{quotient object} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{limits_and_colimits}{}\paragraph*{{Limits and colimits}}\label{limits_and_colimits} [[!include infinity-limits - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{galois_connection_between_quotients_and_relations}{Galois connection between quotients and relations}\dotfill \pageref*{galois_connection_between_quotients_and_relations} \linebreak \noindent\hyperlink{InToposes}{In toposes}\dotfill \pageref*{InToposes} \linebreak \noindent\hyperlink{in_higher_category_theory}{In higher category theory}\dotfill \pageref*{in_higher_category_theory} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} The \textbf{quotient object} $Q$ of a [[congruence]] (an [[internalization|internal]] [[equivalence relation]]) $E$ on an [[object]] $X$ in a [[category]] $C$ is the [[coequalizer]] $Q$ of the induced pair of morphisms $E \underoverset{\longrightarrow}{\longrightarrow}{} X$. If $E$ is additionally the [[kernel pair]] of the map $X \to Q$, then $Q$ is called an \textbf{effective quotient} -- and $E$ is called an \textbf{effective} congruence, with the map $X \to Q$ being an [[effective epimorphism]] (terminology as for \emph{[[effective group action]]}). Sometimes the term is used more loosely to mean an arbitrary [[coequalizer]]. It may also refer to a co-[[subobject]] of $X$ (that is, a subobject of $X$ in the [[opposite category]] $C^\op$), without reference to any congruence on $X$. Note that in a [[regular category]], any [[regular epimorphism]] (i.e. a ``regular quotient'' in the co-subobject sense) is in fact the quotient (= coequalizer) of its [[kernel pair]] (actually, we can prove this under weaker hypotheses; see below). \hypertarget{galois_connection_between_quotients_and_relations}{}\subsection*{{Galois connection between quotients and relations}}\label{galois_connection_between_quotients_and_relations} As we have said, there are various notions of quotient object. Let us consider the most general one, so that $Quot(X)$ of an object $X$ denotes the poset of co-subobjects of $X$, in other words the [[poset|posetal]] [[reflection]] of the [[preorder]] of epis $X \to Q$ which is a [[full subcategory]] of the [[co-slice category]] $X \downarrow \mathbf{C}$. A \emph{regular quotient} then refers to a regular epi $X \to Q$. On the other hand, let $Rel(X)$ be the poset of [[relations]] on $X$, i.e., the poset of subobjects of $X \times X$, or in other words the posetal reflection of the preorder of monos $i = \langle e_1, e_2 \rangle: E \rightarrowtail X \times X$ which is a full subcategory of the [[slice category]] $\mathbf{C} \downarrow X \times X$. Between $Quot(X)$ and $Rel(X)$ there is a relation $\perp$ where $q \perp \langle e_1, e_2 \rangle$ means exactly $q \circ e_1 = q \circ e_2$. If the coequalizer $coeq(e_1, e_2)$ of the parallel pair $e_1, e_2: E \rightrightarrows X$ exists, then by definition we have $coeq(e_1, e_2) \leq q$ iff $q e_1 = q e_2$. On the other hand, if the [[kernel pair]] $\ker(q)$ of $q$ exists, then by definition we have $q e_1 = q e_2$ iff $\langle e_1, e_2 \rangle \leq \ker(q)$. This indicates in a category which admits coequalizers and kernel pairs, we have \begin{prop} \label{}\hypertarget{}{} $coeq: Rel(X) \to Quot(X)$ is [[left adjoint]] to $\ker: Quot(X) \to Rel(X)$. \end{prop} Or, in other words, that $\ker$ and $coeq$ set up a [[Galois connection]] between $Quot(X)^{op}$ and $Rel(X)$. Restricting consideration to kernel pairs only of epis, or coequalizers only of jointly monic pairs, is no real restriction in the presence of epi-mono factorizations: \begin{lemma} \label{image}\hypertarget{image}{} In a category where every morphism $f: A \to B$ has an [[image|epi-mono factorization]] $f = i \circ q$, we have $\ker(f) = \ker(q)$. Similarly, for a pair $f, g: X \rightrightarrows Y$, we have $coeq(f, g) = coeq(e_1, e_2)$ where $\langle f, g \rangle: X \to Y \times Y$ factors as an epi $p: X \to E$ followed by a mono $\langle e_1, e_2 \rangle: E \to Y \times Y$. \end{lemma} \begin{proof} We prove just the first statement; the second is proven similarly. It suffices to observe that the same class of jointly monic pairs $(e_1, e_2)$ are coequalized by $f$ as by $q$; the kernel pair is by definition the maximum of this class. If $q e_1 = q e_2$, then by applying $i$ to both sides we deduce $f e_1 = f e_2$. If $f e_1 = f e_2$, i.e., if $i q e_1 = i q e_2$, then $q e_1 = q e_2$ by monicity of $i$. \end{proof} \begin{prop} \label{galois}\hypertarget{galois}{} Suppose $\mathbf{C}$ is a category with coequalizers and kernel pairs and where every morphism has an epi-mono factorization. Then every regular epi $q$ is the coequalizer of its kernel pair: $q = coeq \circ \ker(q)$. And every kernel pair is the kernel pair of its coequalizer: $i = \ker \circ coeq(i)$. \end{prop} \begin{proof} We just prove the first statement; the second is proved similarly. We have of course a [[counit]] $coeq \circ \ker(q) \leq q$. On the other hand, if $q = coeq(f, g)$ (where we may assume $\langle f, g \rangle$ is monic by the lemma), then we have a unit $\langle f, g \rangle \leq \ker \circ coeq(f, g) = \ker(q)$; applying $coeq$ to each side, we have $q \leq coeq \circ \ker(q)$, as desired. \end{proof} \hypertarget{InToposes}{}\subsection*{{In toposes}}\label{InToposes} Constructing quotient objects in an [[elementary topos]] $\mathbf{E}$, starting from one or another standard definition (e.g., [[finitely complete category]] with [[power objects]]) that doesn't already mention colimits, is not trivial. The standard approach seen in textbooks (see for example \emph{[[Sheaves in Geometry and Logic]]}), apparently first introduced by C.J. Mikkelsen but first published by \hyperlink{RP}{Par\'e{}}, is to prove that the contravariant [[power object]] functor $P \colon \mathbf{E}^{op} \to \mathbf{E}$ is [[monadic functor|monadic]]. It follows that $P$ [[reflected limit|reflects]] [[finite limits]] in $\mathbf{E}^{op}$ from limits in $\mathbf{E}$, but finite limits in $\mathbf{E}^{op}$ are of course finite colimits in $\mathbf{E}$. This elegant approach does involve a fair amount of categorical machinery (a [[monadicity theorem]], [[Beck-Chevalley conditions]], and consideration of up to six applications of the power object functor), making it a challenge to get across intuitively in say an undergraduate course. Other approaches that are closer to naive or common sense set-theoretic reasoning are possible. In the case of quotient objects, to form the coequalizer of a parallel pair $f, g: X \rightrightarrows Y$, we outline a possible path to take (see also at \emph{\href{quotient+type#FromUnivalence}{quotient type -- from univalence}}): \begin{itemize}% \item Construct enough of the [[internal logic]] to make available logical operators $\wedge, \Rightarrow, \forall$. \item Construct an internal [[intersection]] operator $\bigcap: P P X \to P X$ via the formula $\bigcap \Phi = \{x: X\; |\; \forall_{S: P X} \Phi \ni S \Rightarrow S \ni x\}$. \item Construct the [[image]] of a map $f: X \to Y$ by taking the internal intersection of all [[subobjects]] of $Y$ through which $f$ factors. \item To construct the [[coequalizer]] of $f, g: X \rightrightarrows Y$: \begin{itemize}% \item Take the image of $\langle f, g \rangle: X \to Y \times Y$ to get a relation $\langle p_1, p_2 \rangle: R \hookrightarrow Y \times Y$. According to Lemma \ref{image}, a coequalizer of $(p_1, p_2)$ is a coequalizer of $(f, g)$. \item Then take the equivalence relation $\langle e_1, e_2 \rangle: E \hookrightarrow Y \times Y$ generated by $R$, by taking the intersection of all equivalence relations containing $R$; a coequalizer of $(e_1, e_2)$ is a coequalizer of $(p_1, p_2)$ (akin to the fact that any coequalizer must be the coequalizer of its kernel pair, as in Proposition \ref{galois}). \item Take the image factorization of the map $\chi_E: Y \to P Y$ that classifies the relation $E \hookrightarrow Y \times Y$. That is, factor $\chi_E$ as an epi $q: Y \to Q$ followed by a mono $Q \to P Y$. Then $q$ is the desired coequalizer of $(e_1, e_2)$. \end{itemize} \end{itemize} Notice that what these steps collectively do is form the object $Q$ of equivalence classes of the equivalence relation generated by the relation $f(x) \sim g(x)$, which is exactly what we would do in ordinary set theory. Full details will appear elsewhere. \hypertarget{in_higher_category_theory}{}\subsection*{{In higher category theory}}\label{in_higher_category_theory} These notions have generalizations when $C$ is an [[(∞,1)-category]]: \begin{itemize}% \item an equivalence relation is then a [[groupoid object in an (∞,1)-category]] \item it has an ``effective quotient'' if it is [[delooping|deloopable]]. \end{itemize} For instance an [[action groupoid]] is a quotient of a group action in 2-category theory. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item [[quotient set]] \item [[quotient group]] \item [[quotient module]] \item [[quotient ring]] \end{itemize} ([[quotient norm]]) \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[fraction]] \item [[subquotient]] \item [[quotient space]], [[geometric invariant theory]] \item [[quotient stack]] \item In [[type theory]]/[[homotopy type theory]] the analogous concept is that of [[quotient types]]. \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Robert Paré]], \emph{Colimits in Topoi}, Bull. AMS 80 (1974) pp.556-561. (\href{http://www.ams.org/journals/bull/1974-80-03/S0002-9904-1974-13497-X/S0002-9904-1974-13497-X.pdf}{pdf}) \end{itemize} [[!redirects quotient object]] [[!redirects quotient objects]] [[!redirects quotient]] [[!redirects quotients]] [[!redirects regular quotient]] [[!redirects regular quotients]] [[!redirects effective quotient]] [[!redirects effective quotients]] \end{document}