\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{quotient space} \begin{quote}% This entry is about the concept in topology. For \emph{[[quotient vector spaces]]} in linear algebras see there. \end{quote} \vspace{.5em} \hrule \vspace{.5em} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topology}{}\paragraph*{{Topology}}\label{topology} [[!include topology - contents]] \hypertarget{geometry}{}\paragraph*{{Geometry}}\label{geometry} [[!include higher geometry - contents]] \hypertarget{quotient_spaces}{}\section*{{Quotient spaces}}\label{quotient_spaces} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{in_}{In $Top$}\dotfill \pageref*{in_} \linebreak \noindent\hyperlink{in__2}{In $Loc$}\dotfill \pageref*{in__2} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{quotient space} is a [[quotient object]] in some [[category]] of [[spaces]], such as [[Top]] (of [[topological spaces]]), or [[Loc]] (of [[locales]]), etc. Often the construction is used for the quotient $X/A$ by a subspace $A \subset X$ (example \ref{QuotientBySubspace} below). Beware that [[quotient objects]] in the [[category]] [[Vect]] of [[vector spaces]] also traditionally called `quotient space', but they are really just a special case of [[quotient modules]], very different from the other kinds of quotient space. However in \emph{[[topological vector spaces]]} both concepts come together. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} \hypertarget{in_}{}\subsubsection*{{In $Top$}}\label{in_} \begin{defn} \label{QuotientTopologicalSpace}\hypertarget{QuotientTopologicalSpace}{} \textbf{(quotient topological space)} Let $(X,\tau_X)$ be a [[topological space]] and let \begin{displaymath} R_\sim \subset X \times X \end{displaymath} be an [[equivalence relation]] on its underlying set. Then the \emph{quotient topological space} has \begin{itemize}% \item as underlying set the [[quotient set]] $X/\sim$, hence the set of [[equivalence classes]], \end{itemize} and \begin{itemize}% \item a subset $O \subset X/\sim$ is declared to be an [[open subset]] precisely if its [[preimage]] $\pi^{-1}(O)$ under the canonical [[projection map]] \begin{displaymath} \pi \;\colon\; X \to X/\sim \end{displaymath} is open in $X$. \end{itemize} To see that this indeed does define a topology on $X/\sim$ it is sufficient to observe that taking pre-images commutes with taking unions and with taking intersections. Often one considers this with input datum not the equivalence relation, but any [[surjection]] \begin{displaymath} \pi \;\colon\; X \longrightarrow Y \end{displaymath} of sets. Of course this identifies $Y = X/\sim$ with $(x_1 \sim x_2) \Leftrightarrow (\pi(x_1) = \pi(x_2))$. Hence the \emph{quotient topology} on the codomain set of a function out of any topological space has as open subsets those whose pre-images are open. Equivalently this is the \emph{[[final topology]]} or \emph{[[strong topology]]} induced on $Y$ by the function $X \to Y$, see at \emph{\href{Top#UniversalConstructions}{Top -- Universal constructions}}. \end{defn} For this construction the function $X \to Y$ need not even be surjective, and we could generalize to a [[sink]] instead of a single map; in such a case one generally says \emph{[[final topology]]} or \emph{[[strong topology]]}. See also at \emph{[[topological concrete category]]}. \hypertarget{in__2}{}\subsubsection*{{In $Loc$}}\label{in__2} A quotient space in $Loc$ is given by a [[regular subobject]] in [[Frm]]. (More details needed.) \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{example} \label{CircleAsQuotientOfClosedIntervalIdentifyingEndpoints}\hypertarget{CircleAsQuotientOfClosedIntervalIdentifyingEndpoints}{} The [[trigonometric function]] \begin{displaymath} (cos(-),sin(-)) \;\colon\; [0,2\pi] \longrightarrow S^1 \subset \mathbb{R}^2 \end{displaymath} from the [[closed interval]] with its [[Euclidean space|Euclidean]] [[metric topology]] to the unit [[circle]] equipped with the [[subspace topology]] of the [[Euclidean space|Euclidean]] [[plane]] descends to a [[homeomorphism]] on the quotient space $[0,2 \pi]/(0 \sim 2 \pi)$ by the equivalence relation which identifies the two endpoints of the open interval. \begin{displaymath} \itexarray{ [0,2\pi] &\overset{(cos(-),sin(-))}{\longrightarrow}& S^1 \\ \downarrow & \nearrow_{\mathrlap{\simeq}} \\ [0,2\pi]/\simeq } \,. \end{displaymath} \end{example} \begin{proof} By the [[universal property]] of the quotient it follows that $[0,2\pi]/(0 \sim 2\pi) \to S^1$ is a [[continuous function]]. Moreover, it is a [[bijection]] on the underlying sets by the $2\pi$-periodicity of sine and coside. Hence it is sufficient to see that it is an [[open map]] (by \href{homeomorphism#HomeoContinuousOpenBijection}{this prop.}). Since the open subsets of $[0,2\pi]$ are unions of \begin{enumerate}% \item the [[open intervals]] $(a,b)$ with $0 \lt a \lt b \lt 2\pi$, \item the [[half-open intervals]] $[0,b)$ and $(a,2\pi]$ with $0 \lt a,b \lt 2\pi$ \end{enumerate} and since the projection map $\pi \colon [0,2\pi] \to [0,2\pi]/(0 \sim 2\pi)$ is injective on $(0, 2\pi)$, the open subsets of $[0,2\pi]/(0 \sim 2\pi)$ are unions of \begin{enumerate}% \item the [[open intervals]] $(a,b)$ with $0 \lt a \lt b \lt 2\pi$, \item the glued [[half-open intervals]] $(b,2\pi]/(0\sim 2\pi) \cup [0,a)/(0 \sim 2\pi)$ for $0 \lt a,b \lt 2\pi$. \end{enumerate} By the $2\pi$-periodicity of $(cos(-),sin(-))$, the image of the latter under $(cos(-),sin(-))$ is the same as the image of $(b, 2\pi + a)$. Since the function $(cos(-),sin(-)) \colon \mathbb{R} \to S^1$ is clearly an open map, it follows that the images of these open subsets in $S^1$ are open. \end{proof} \begin{example} \label{QuotientBySubspace}\hypertarget{QuotientBySubspace}{} \textbf{(quotient by a subspace)} Let $X$ be a [[topological space]] and $A \subset X$ a [[inhabited set|non-empty]] [[subset]]. Consider the [[equivalence relation]] on $X$ which identifies all points in $A$ with each other. The resulting quotient space (def. \ref{QuotientTopologicalSpace}) is often simply denoted $X/A$. Notice that $X/A$ is canonically a [[pointed topological space]], with base point the [[equivalence class]] $A/A \subset X/A$ of $A$. If $A = \emptyset$ is the [[empty space]], then one defines \begin{displaymath} X/\emptyset \coloneqq X_+ \coloneqq X \sqcup \ast \end{displaymath} to be the [[disjoint union space]] of $X$ with the [[point space]]. This is no longer a quotient space, but both constructions are unified by the \emph{[[pushout]]} $i \colon A \to X$ along the map $A \to \ast$, equivalently the [[cokernel]] of the inclusion: \begin{displaymath} \itexarray{ A &\overset{i}{\hookrightarrow}& X \\ \downarrow &(po)& \downarrow \\ \ast &\longrightarrow& X/A } \,. \end{displaymath} This kind of quotient space plays a central role in the discussion of [[long exact sequences in cohomology]], see at \emph{[[generalized (Eilenberg-Steenrod) cohomology]]}. \end{example} \begin{example} \label{QuotientOfRealNumbersByTranslationByRationalNumbers}\hypertarget{QuotientOfRealNumbersByTranslationByRationalNumbers}{} Consider the [[real numbers]] $\mathbb{R}$ equipped with their [[Euclidean space|Euclidean]] [[metric topology]]. Consider on $\mathbb{R}$ the [[equivalence relation]] which identifies all real numbers that differ by a [[rational number]]: \begin{displaymath} (x_1 \sim_{\mathbb{Q}} x_2) \Leftrightarrow \left( x_2 - x_1 \in \mathbb{Q} \subset \mathbb{Q} \right) \,. \end{displaymath} Then the quotient space $\mathbb{R}/\sim_{\mathbb{Q}}$ is a [[codiscrete topological space]]. \end{example} \begin{proof} We need to check that the only open subsets of $X/\sim_{\mathbb{Q}}$ are the empty set and the entire set $X/\sim_{\mathbb{Q}}$. So let $U \subset \mathbb{R}/\sim$ be a non-empty subset. Write $\pi \colon \mathbb{R} \to \mathbb{R}/\sim_{\mathbb{Q}}$ for the quotient projection. By definition $U$ is open precisely if its pre-image $\pi^{-1}(U) \subset \mathbb{R}$ is open. By the Euclidean topology, this is the case precissely if $\pi^{-1}(U)$ is a union of [[open intervals]]. Since by assumption $\pi^{-1}(U)$ is non-empty, it contains at least one open interval $(a,b) \subset \mathbb{R}$, with $a \lt b$. By the density of the rational numbers, there exists a rational number $q \in \mathbb{Q} \subset \mathbb{R}$ with \begin{displaymath} 0 \lt q \lt b - a \,. \end{displaymath} By definition of $\sim_{\mathbb{Q}}$ we have for all $n \in \mathbb{Z}$ that all elements in $(a + n q, b + n q) \subset \mathbb{R}$ are $\sim_{\mathbb{Q}}$-equivalent to elements in $(a,b)$, hence that also $(a+q,b+q) \subset \pi^{-1}(U)$. But the union of these open intervals is all of $\mathbb{R}$ \begin{displaymath} \underset{n \in \mathbb{Z}}{\cup} (q + n q, b + n q) \;=\; \mathbb{R} \end{displaymath} and so $\pi^{-1}(U) = \mathbb{R}$. \end{proof} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{enumerate}% \item Recall that a map $q \colon X \to Y$ is [[open map|open]] if $q(U)$ is open in $Y$ whenever $U$ is open in $X$. It is not the case that a quotient map $q \colon X \to Y$ is necessarily open. Indeed, the identification map $q \colon I \sqcup \{\ast\} \to S^1$, where the endpoints of $I$ are identified with $\ast$, takes the open point $\ast$ of the domain to a non-open point in $S^1$. \item Nor is it the case that a quotient map is necessarily a closed map; the classic example is the projection map $\pi_1 \colon \mathbb{R}^2 \to \mathbb{R}$, which projects the closed locus $x y = 1$ onto a non-closed subset of $\mathbb{R}$. (This is a quotient map, by the next remark.) \item It is easy to prove that a continuous open surjection $p \colon X \to Y$ is a quotient map. For instance, projection maps $\pi \colon X \times Y \to Y$ are quotient maps, provided that $X$ is inhabited. Likewise, a continuous closed surjection $p: X \to Y$ is a quotient map: $p^{-1}(U)$ is open $\Rightarrow$ $p^{-1}(\neg U)$ is closed $\Rightarrow$ $p(p^{-1}(\neg U)) = \neg U$ is closed $\Rightarrow$ $U$ is open. For example, a continuous surjection from a compact space to a Hausdorff space is a quotient map. \end{enumerate} \begin{prop} \label{DetectViaSaturatedSubsetsContinuousQuotientMap}\hypertarget{DetectViaSaturatedSubsetsContinuousQuotientMap}{} A [[continuous function]] \begin{displaymath} f \;\colon\; (X, \tau_X) \longrightarrow (Y,\tau_Y) \end{displaymath} whose underlying function $f \colon X \longrightarrow Y$ is [[surjective function|surjective]] exhibits $\tau_Y$ as the corresponding [[quotient topological space|quotient topology]] precisely if $f$ sends open and $f$-[[saturated subsets]] in $X$ to open subsets of $Y$. By \href{saturated+subset#ComplementOfSaturatedSubsetIsSaturated}{this lemma} this is the case precisely if it sends closed and $f$-saturated subsets to closed subsets. \end{prop} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Sullivan model of finite G-quotient]] \item [[image]] \item [[subspace]], [[subframe]] \item [[quotient]], [[quotient stack]], [[quotient type]] \end{itemize} [[!include universal constructions of topological spaces -- table]] [[!redirects quotient space]] [[!redirects quotient spaces]] [[!redirects identification space]] [[!redirects identification spaces]] [[!redirects quotient topology]] [[!redirects quotient topologies]] [[!redirects identification topology]] [[!redirects identification topologies]] [[!redirects quotient locale]] [[!redirects quotient locales]] [[!redirects quotient topological space]] [[!redirects quotient topological spaces]] [[!redirects topological quotient space]] [[!redirects topological quotient spaces]] [[!redirects quotient space topology]] [[!redirects quotient space topologies]] \end{document}