\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{quotient stack} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{$(\infty,1)$-Topos Theory}}\label{topos_theory} [[!include (infinity,1)-topos - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{motivation_for_definition_of_quotient_stack}{Motivation for definition of quotient stack.}\dotfill \pageref*{motivation_for_definition_of_quotient_stack} \linebreak \noindent\hyperlink{universal_property__for_quotient_stack}{Universal property (??) for Quotient stack}\dotfill \pageref*{universal_property__for_quotient_stack} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{relation_to_principal_and_associated_bundles}{Relation to principal and associated bundles}\dotfill \pageref*{relation_to_principal_and_associated_bundles} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} For $\mathcal{T}$ a [[sheaf topos]], $G \in Grp(\mathcal{T})$ a [[group object]] and $V \in \mathcal{T}$ any object, and for $\rho \colon V \times G \to V$ an [[action]] of $G$ on $V$ , the \textbf{quotient stack} $V// G$ is the [[quotient]] of this action but formed not in $\mathcal{T}$ but under the inclusion \begin{displaymath} \mathcal{T} \hookrightarrow \mathbf{H} \end{displaymath} into the [[(2,1)-topos]] over the given [[site]] of definition: it is the quotient after regarding the action as an [[infinity-action]] in $\mathbf{H}$. This is the geometric version of the notion of \emph{[[action groupoid]]}. A wider notion of the quotient stack may be defined using more general internal groupoids. Indeed, the [[small fibration]] obtained by the [[externalization]] of an internal groupoid in a site with pullbacks will be a [[fibered category]] which is a candidate for a quotient stack in this context. For many interesting sites, sometimes under additional conditions on the internal groupoid, the resulting small fibration is indeed a stack. If the [[stabilizer subgroups]] of the [[action]] are [[finite groups]], then the quotient stack is an [[orbifold]]/[[Deligne-Mumford stack]] --the ``quotient orbifold''. \hypertarget{motivation_for_definition_of_quotient_stack}{}\subsection*{{Motivation for definition of quotient stack.}}\label{motivation_for_definition_of_quotient_stack} Let $G$ be a Lie group action on a manifold $X$ (left action). We define the quotient stack $[X/G]$ as \begin{displaymath} [X/G](Y):=\{P\xrightarrow{p} Y, P\xrightarrow{f}X | P\rightarrow Y \text{ is a G-bundle,} f \text{ is } G\text{-equivariant}\}. \end{displaymath} Morphisms of objects are $G$-equivariant isomorphisms. This definition is taken from Heinloth's \href{https://www.uni-due.de/~hm0002/stacks.pdf}{Some notes on Differentiable stacks}. Given a Lie group action of $G$ on $X$, if we want to associate a stack, we start with simpler cases which allows us to guess how to define $[X/G]$ in general. \begin{enumerate}% \item Suppose $X$ is trivial and $G$ acts trivially on $X=\{*\}$ then $[X/G]$ should only depend on $G$. We know what stack to associate for a Lie group $G$ i.e., $BG$. Thus, $[X/G]$ should just be $BG$. \item Suppose $G$ is trivial and $G$ acts on $X$, $[X/G]$ should only depend on $X$. We know what stack to associate for a manifold $X$ i.e., $\underline{X}$. Thus, $[X/G]$ should just be $\underline{X}$. \item Suppose $G$ is non trivial and $X$ is non trivial and that the action of $G$ on $X$ is free (and proper) so that $X/G$ is a manifold. We know what stack to associate for a manifold $X/G$ i.e., $\underline{X/G}$. Thus, $[X/G]$ should just be $\underline{X/G}$. \end{enumerate} For general case of $G$ acting on $X$, we get a Lie groupoid, called the Translation groupoid (or action groupoid) usually denoted by $G\ltimes X$. \begin{itemize}% \item Given a manifold $M$, we have a stack associated to it, namely $\underline{M}$. Given a Lie group $G$, we have a stack associated to it, namely $BG$. Given a Lie groupoid $\mathcal{G}$, we have a stack associated to it, namely $B\mathcal{G}$ i.e., the stack of principal groupoid $\mathcal{G}$ bundles. \end{itemize} For action groupoid $\mathcal{G}=G\ltimes X$, let $B\mathcal{G}$ be the corresponding stack of principal $\mathcal{G}$ bundles. It turns out that $B\mathcal{G}$ is same $[X/G]$ defined above. More details to be found in \href{https://mathoverflow.net/questions/319038/motivation-for-definition-of-quotient-stack}{this page}. \begin{itemize}% \item If action of the Lie group $G$ on the manifold $X$ is free and proper, what we get is \textbf{a manifold} $X/G$. Stack associated to this manifold is $\underline{X/G}$ which we call to be the quotient stack, denote by $[X/G]$. \item If the action of the Lie group $G$ on the manifold $X$ is not necessarily free and proper, what we get is \textbf{a Lie groupoid} denoted (among other symbols) by $X//G$. Stack associated to this Lie groupoid $X//G$ is $B(X//G)$ which we call to be the quotient stack, denote by $[X/G]$. \end{itemize} \hypertarget{universal_property__for_quotient_stack}{}\subsection*{{Universal property (??) for Quotient stack}}\label{universal_property__for_quotient_stack} Let $G$ be a Lie group and $X$ be a manifold with a $G$ action on it. Suppose $G$ acts freely, properly on $X$ then, we have mentioned that the quotient stack $[X/G]$ has to be the stack $\underline{X/G}$. The proper, free action of $G$ on $X$ gives a principal $G$ bundle $X\rightarrow X/G$. This $X\rightarrow X/G$ gives a map of stacks $\underline{X}\rightarrow \underline{X/G}$. We call the map of stacks $\underline{X}\rightarrow \underline{X/G}$ to be a principal $G$ bundle. A map of stacks $\underline{M}\rightarrow \mathcal{D}$ is said to be representable morphism if given a manifold $N$ and a map of stacks $\underline{N}\rightarrow \mathcal{D}$, the fiber product $\underline{M}\times_{\mathcal{D}}\underline{N}$ is a manifold. A map of stacks $\underline{M}\rightarrow \mathcal{D}$ is said to be a principal $G$ bundle if it is a representable morphism and the map of manifolds $\underline{M}\times_{\mathcal{D}}\underline{N}\rightarrow N$ is a principal $G$ bundle. It is easy to see that the map of stacks $\underline{X}\rightarrow \underline{X/G}$ is a principal $G$ bundle as the map of manifolds $X\rightarrow X/G$ is a principal $G$ bundle. We see the property ``$\underline{X}\rightarrow \underline{X/G}$ is a principal $G$ bundle'' as main ingredient to define the quotient stack $[X/G]$. Irrespective of $G$ acting freely and properly on $X$, we want to define quotient stack as a stack $\mathcal{D}$ such that $\underline{X}\rightarrow \mathcal{D}$ is a principal $G$ bundle in minimal terms. More precisely, by quotient stack of the action of $G$ on $X$, we mean a stack $\mathcal{D}$ that \textbf{comes with a map of stacks $\underline{X}\rightarrow \mathcal{D}$} that is a principal $G$ bundle (in the sense defined above) any map of stacks $\underline{X}\rightarrow \mathcal{C}$ that is a principal $G$ bundle factors through this map $\underline{X}\rightarrow \mathcal{D}$. If $G$ acts freely and properly, then obvious choice for $\mathcal{D}$ is the stack $\underline{X/G}$. Using the universal property, it turns out that $\mathcal{D}$ has to be the stack in the definition of quotient stack \begin{displaymath} \mathcal{D}(Y):=\{P\xrightarrow{p} Y, P\xrightarrow{f}X | P\rightarrow Y \text{ is a G-bundle,} f \text{ is } G\text{-equivariant}\}. \end{displaymath} Morphisms of objects are $G$-equivariant isomorphisms. We fix the notation $[X/G]$ for $\mathcal{D}$ and call it the quotient stack. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{relation_to_principal_and_associated_bundles}{}\subsubsection*{{Relation to principal and associated bundles}}\label{relation_to_principal_and_associated_bundles} For $V = *$ the [[terminal object]], one writes $\mathbf{B}G \coloneqq *// G$. This is the [[moduli stack]] for $G$-[[principal bundles]]. It is also the trivial \emph{$G$-[[gerbe]]}. There is a canonical projection $\overline{\rho} \;\colon\; V// G \to \mathbf{B}G$. This is the [[universal associated infinity-bundle|universal rho-associated bundle]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[quotient]], [[quotient space]], [[quotient type]] \item [[action groupoid]] \item [[local quotient stack]] \item [[Borel construction]] \item [[(infinity,1)-colimit]], [[infinity-action]] \item [[mapping stack]] \item [[orbifold]], [[Deligne-Mumford stack]] \item [[geometric invariant theory]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} (\ldots{}) \begin{itemize}% \item [[Jack Morava]], \emph{Theories of anything} (\href{http://arxiv.org/abs/1202.0684}{arXiv:1202.0684}) \item [[J. Heinloth]], \emph{Some notes on Differentiable stacks}(\href{https://www.uni-due.de/~hm0002/stacks.pdf}{stacks}) \end{itemize} [[!redirects quotient stacks]] [[!redirects orbifold quotient]] [[!redirects orbifold quotients]] [[!redirects quotient orbifold]] [[!redirects quotient orbifolds]] [[!redirects stacky quotient]] \end{document}