\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{rational Cohomotopy} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{rational_homotopy_theory}{}\paragraph*{{Rational homotopy theory}}\label{rational_homotopy_theory} [[!include differential graded objects - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{sullivan_models_for_cocycle_spaces}{Sullivan models for cocycle spaces}\dotfill \pageref*{sullivan_models_for_cocycle_spaces} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{the_cocycle_space_for_}{The cocycle space for $\pi^4\big( S^1\big)_{\mathbb{Q}}$}\dotfill \pageref*{the_cocycle_space_for_} \linebreak \noindent\hyperlink{the_cocycle_space_for__2}{The cocycle space for $\pi^4\big( S^3\big)_{\mathbb{Q}}$}\dotfill \pageref*{the_cocycle_space_for__2} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{cocycle_spaces}{Cocycle spaces}\dotfill \pageref*{cocycle_spaces} \linebreak \noindent\hyperlink{on_superspaces}{On super-spaces}\dotfill \pageref*{on_superspaces} \linebreak \noindent\hyperlink{rational_equivariant_cohomotopy}{Rational equivariant Cohomotopy}\dotfill \pageref*{rational_equivariant_cohomotopy} \linebreak \noindent\hyperlink{rational_twisted_cohomotopy}{Rational twisted Cohomotopy}\dotfill \pageref*{rational_twisted_cohomotopy} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \emph{Rational Cohomotopy theory} $\pi^\bullet_{\mathbb{Q}}$ is the approximation in [[rational homotopy theory]] of [[Cohomotopy cohomology theory]], i.e. the ([[non-abelian cohomology|non-abelian]]) [[generalized cohomology theory]] whose [[cocycle spaces]] are [[rationalizations]] of the [[cocycle spaces]] of plain [[Cohomotopy cohomology theory]], hence which are [[spaces of maps]] into [[rational n-spheres]] $S^n_{\mathbb{Q}}$: \begin{displaymath} \pi^n_{\mathbb{Q}}(-) \;=\; \pi_0 Maps\big(-, S^n\big)_{\mathbb{Q}} \;\simeq\; \pi_0 Maps\big(-, S^n_{\mathbb{Q}}\big) \;. \end{displaymath} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{sullivan_models_for_cocycle_spaces}{}\subsubsection*{{Sullivan models for cocycle spaces}}\label{sullivan_models_for_cocycle_spaces} Discussion of [[rational cohomology]] and of [[Sullivan models]] for [[cocycle spaces]] in rational Cohomotopy. \begin{prop} \label{RationalHomotopyTypeOfMapsNSphereToNsphere}\hypertarget{RationalHomotopyTypeOfMapsNSphereToNsphere}{} \textbf{([[rational homotopy type]] of [[space of maps]] from [[n-sphere]] to itself)} Let $n \in \mathbb{N}$ be a [[natural number]] and $f\colon S^n \to S^n$ a [[continuous function]] from the [[n-sphere]] to itself. Then the [[connected component]] $Maps_f\big( S^n, S^n\big)$ of the [[space of maps]] which contains this map has the following [[rational homotopy theory|rational]] [[homotopy type]]: \begin{equation} Maps_f\big( S^n, S^n\big) \;\simeq_{\mathbb{Q}}\; \left\{ \itexarray{ S^n \times S^{n-1} &\vert& n\,\text{even}\,, deg(f) = 0 \\ S^{2n-1} &\vert& n \, \text{even}\,, deg(f) \neq 0 \\ S^n &\vert& n\, \text{odd} } \right. \label{RationalHomotopyTypeOfMappingSpacesSnToSn}\end{equation} where $deg(f)$ is the [[degree of a continuous function|degree]] of $f$. Moreover, under the canonical morphism expressing the canonical [[action]] of the [[special orthogonal group]] $SO(n+1)$ on $S^n = S\big( \mathbb{R}^{n+1}\big)$ (regarded as the [[unit sphere]] in $(n+1)$-[[dimension|dimensional]] [[Cartesian space]]) we have that on [[ordinary homology]] \begin{displaymath} \itexarray{ H_\bullet\Big( SO\big( n+ 1 \big) \Big) &\longrightarrow& H_\bullet\Big( Maps_{f = id}\big( S^n, S^n \big) \Big) } \end{displaymath} the generator in $\left\{ \itexarray{ H_{2n+1}\big( SO(n+1), \mathbb{Q} \big) \simeq \mathbb{Q} &\vert& n\, \text{even} \\ H_{n}\big( SO(n+1), \mathbb{Q} \big) \simeq \mathbb{Q} &\vert& n\, \text{odd} } \right.$ maps to the [[fundamental class]] of the respective [[spheres]] in \eqref{RationalHomotopyTypeOfMappingSpacesSnToSn}, all other generators mapping to [[zero]]. \end{prop} (\hyperlink{MollerRaussen85}{Møller-Raussen 85, Example 2.5}, \hyperlink{CohenVoronov05}{Cohen-Voronov 05, Lemma 5.3.5}) See at \emph{[[Sullivan model of a spherical fibration]]} for more on this. \begin{prop} \label{RationalCohomologyOfIteratedLoopSpaceOf2kSphere}\hypertarget{RationalCohomologyOfIteratedLoopSpaceOf2kSphere}{} \textbf{([[rational cohomology]] of [[iterated loop space]] of the [[n-sphere|2k-sphere]])} Let \begin{displaymath} 1 \leq D \lt n = 2k \in \mathbb{N} \end{displaymath} (hence two [[positive number|positive]] [[natural numbers]], one of them required to be [[even number|even]] and the other required to be smaller than the first) and consider the [[iterated loop space|D-fold loop space]] $\Omega^D S^n$ of the [[n-sphere]]. Its [[rational cohomology|rational]] [[cohomology ring]] is the [[free construction|free]] [[graded-commutative algebra]] over $\mathbb{Q}$ on one [[generators and relations|generator]] $e_{n-D}$ of degree $n - D$ and one generator $a_{2n - D - 1}$ of degree $2n - D - 1$: \begin{displaymath} H^\bullet \big( \Omega^D S^n , \mathbb{Q} \big) \;\simeq\; \mathbb{Q}\big[ \omega_{n - D}, \omega_{2n - 1 - D} \big] \,. \end{displaymath} \end{prop} (by \href{Sullivan+model+of+free+loop+space#SullivanModelsOfMapsFromSkToSnFornLargerk}{this Prop.} at \emph{[[Sullivan model of based loop space]]}; see also \hyperlink{KallelSjerve99}{Kallel-Sjerve 99, Prop. 4.10}) For the edge case $\Omega^D S^D$ the above formula does not apply, since $\Omega^{D-1} S^D$ is not [[simply connected topological space|simply connected]] (its [[fundamental group]] is $\pi_1\big( \Omega^{D-1}S^D \big) = \pi_0 \big(\Omega^D S^D\big) = \pi_D(S^D) = \mathbb{Z}$, the 0th [[stable homotopy group of spheres]]). But: \begin{example} \label{RationalModelsForBasedMappingSpaceSDToSD}\hypertarget{RationalModelsForBasedMappingSpaceSDToSD}{} The rational model for $\Omega^D S^D$ follows from Prop. \ref{RationalHomotopyTypeOfMapsNSphereToNsphere} by realizing the pointed mapping space as the [[homotopy fiber]] of the [[evaluation map]] from the free mapping space: \begin{displaymath} \itexarray{ \mathllap{ \Omega^D S^D \simeq \;} Maps^{\ast/\!}\big( S^D, S^D\big) \\ \big\downarrow^{\mathrlap{fib(ev_\ast)}} \\ Maps(S^D, S^D) \\ \big\downarrow^{\mathrlap{ev_\ast}} \\ S^D } \end{displaymath} This yields for instance the following examples. In odd dimensions: $\backslash$begin\{xymatrix\} $\backslash$mathrm\{Maps\}{\tt \symbol{94}}\{$\backslash$ast/!\} $\backslash$big( S{\tt \symbol{94}}3, S{\tt \symbol{94}}3 $\backslash$big) $\backslash$ard{\tt \symbol{94}}-\{ $\backslash$mathrm\{fib\}\_\{($\backslash$mathrm\{ev\}\_$\backslash$ast)\} \} $\backslash$ar@\{\}r|-\{ $\backslash$simeq\_\{$\backslash$mathbb\{Q\}\} \} \& $\backslash$underset\{ n $\backslash$in $\backslash$mathbb\{Z\} \}\{$\backslash$sqcup\} $\backslash$ast $\backslash$ar@\{{\tt \symbol{94}}\{(\}-{\tt \symbol{62}}\}d $\backslash$ $\backslash$mathrm\{Maps\} $\backslash$big( S{\tt \symbol{94}}3, S{\tt \symbol{94}}3 $\backslash$big) $\backslash$ard{\tt \symbol{94}}-\{ $\backslash$mathrm\{ev\}\_$\backslash$ast \} $\backslash$ar@\{\}r|-\{ $\backslash$simeq\_\{$\backslash$mathbb\{Q\}\} \} \& $\backslash$underset\{ n $\backslash$in $\backslash$mathbb\{Z\} \}\{$\backslash$sqcup\} S{\tt \symbol{94}}3 $\backslash$ard{\tt \symbol{94}}-\{ ($\backslash$mathrm\{id\}\_\{S{\tt \symbol{94}}3\})\_\{n $\backslash$in $\backslash$mathbb\{N\}\} \} $\backslash$ S{\tt \symbol{94}}3 $\backslash$ar@\{=\}r \& S{\tt \symbol{94}}3 $\backslash$end\{xymatrix\} In even dimensions: (In the following $h_{\mathbb{K}}$ denotes the [[Hopf fibration]] of the [[division algebra]] $\mathbb{K}$, hence $h_{\mathbb{C}}$ denotes the [[complex Hopf fibration]] and $h_{\mathbb{H}}$ the [[quaternionic Hopf fibration]].) $\backslash$begin\{xymatrix\} $\backslash$mathrm\{Maps\}{\tt \symbol{94}}\{$\backslash$ast/!\} $\backslash$big( S{\tt \symbol{94}}2, S{\tt \symbol{94}}2 $\backslash$big) $\backslash$ard{\tt \symbol{94}}-\{ $\backslash$mathrm\{fib\}\_\{($\backslash$mathrm\{ev\}\_$\backslash$ast)\} \} $\backslash$ar@\{\}r|-\{ $\backslash$simeq\_\{$\backslash$mathbb\{Q\}\} \} \& $\backslash$underset\{ n $\backslash$in $\backslash$mathbb\{Z\} \}\{$\backslash$sqcup\} S{\tt \symbol{94}}1 $\backslash$ar@\{{\tt \symbol{94}}\{(\}-{\tt \symbol{62}}\}d $\backslash$ $\backslash$mathrm\{Maps\} $\backslash$big( S{\tt \symbol{94}}2, S{\tt \symbol{94}}2 $\backslash$big) $\backslash$ard{\tt \symbol{94}}-\{ $\backslash$mathrm\{ev\}\_$\backslash$ast \} $\backslash$ar@\{\}r|-\{ $\backslash$simeq\_\{$\backslash$mathbb\{Q\}\} \} \& $\backslash$big( S{\tt \symbol{94}}2 $\backslash$times S{\tt \symbol{94}}1 $\backslash$big) $\backslash$sqcup $\backslash$big( $\backslash$underset\{ n $\backslash$neq 0 $\backslash$in $\backslash$mathbb\{Z\} \}\{$\backslash$sqcup\} S{\tt \symbol{94}}3 $\backslash$big) $\backslash$ard{\tt \symbol{94}}-\{ $\backslash$big( p\_1, (h\_\{$\backslash$mathbb\{C\}\})\_\{n $\backslash$neq 0 $\backslash$in $\backslash$mathbb\{N\}\} $\backslash$big) \} $\backslash$ S{\tt \symbol{94}}2 $\backslash$ar@\{=\}r \& S{\tt \symbol{94}}2 $\backslash$end\{xymatrix\} $\backslash$begin\{xymatrix\} $\backslash$mathrm\{Maps\}{\tt \symbol{94}}\{$\backslash$ast/!\} $\backslash$big( S{\tt \symbol{94}}4, S{\tt \symbol{94}}4 $\backslash$big) $\backslash$ard{\tt \symbol{94}}-\{ $\backslash$mathrm\{fib\}\_\{($\backslash$mathrm\{ev\}\_$\backslash$ast)\} \} $\backslash$ar@\{\}r|-\{ $\backslash$simeq\_\{$\backslash$mathbb\{Q\}\} \} \& $\backslash$underset\{ n $\backslash$in $\backslash$mathbb\{Z\} \}\{$\backslash$sqcup\} S{\tt \symbol{94}}3 $\backslash$ar@\{{\tt \symbol{94}}\{(\}-{\tt \symbol{62}}\}d $\backslash$ $\backslash$mathrm\{Maps\} $\backslash$big( S{\tt \symbol{94}}4, S{\tt \symbol{94}}4 $\backslash$big) $\backslash$ard{\tt \symbol{94}}-\{ $\backslash$mathrm\{ev\}\_$\backslash$ast \} $\backslash$ar@\{\}r|-\{ $\backslash$simeq\_\{$\backslash$mathbb\{Q\}\} \} \& $\backslash$big( S{\tt \symbol{94}}4 $\backslash$times S{\tt \symbol{94}}3 $\backslash$big) $\backslash$sqcup $\backslash$big( $\backslash$underset\{ n $\backslash$neq 0 $\backslash$in $\backslash$mathbb\{Z\} \}\{$\backslash$sqcup\} S{\tt \symbol{94}}7 $\backslash$big) $\backslash$ard{\tt \symbol{94}}-\{ $\backslash$big( p\_1, (h\_\{$\backslash$mathbb\{H\}\})\_\{n $\backslash$neq 0 $\backslash$in $\backslash$mathbb\{N\}\} $\backslash$big) \} $\backslash$ S{\tt \symbol{94}}4 $\backslash$ar@\{=\}r \& S{\tt \symbol{94}}4 $\backslash$end\{xymatrix\} \end{example} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} We discuss examples of cocycle spaces for rational 4-Cohomotopy, hence with [[coefficients]] in the [[rational n-sphere|rational]] [[4-sphere]], whose [[Sullivan model]] is \begin{displaymath} CE \big( S^4 \big) \;=\; \left( \begin{aligned} d\,g_4 & = 0 \\ d\,g_7 & = -\tfrac{1}{2} g_4 \wedge g_4 \end{aligned} \right) \,. \end{displaymath} \hypertarget{the_cocycle_space_for_}{}\subsubsection*{{The cocycle space for $\pi^4\big( S^1\big)_{\mathbb{Q}}$}}\label{the_cocycle_space_for_} The [[Sullivan model]] for the [[space of maps]] $Maps(S^1, S^4)$ from the [[1-sphere]] to the [[4-sphere]] is \begin{displaymath} CE \Big( \mathfrak{l} Maps \big( S^1, S^4 \big) \Big) \;=\; \left( \begin{aligned} d\,h_3 & = 0 \\ d\, \omega_4 & = 0 \\ d\, \omega_6 & = h_3 \wedge \omega_4 \\ d\, h_7 & = -\tfrac{1}{2} \omega_4 \wedge \omega_4 \\ \end{aligned} \right) \end{displaymath} By \hyperlink{Sullivan+model+of+free+loop+space#SullivanModelForTheFreeLoopSpace}{this Prop.}, see \hyperlink{FSS16}{FSS 16, Section 3}. \hypertarget{the_cocycle_space_for__2}{}\subsubsection*{{The cocycle space for $\pi^4\big( S^3\big)_{\mathbb{Q}}$}}\label{the_cocycle_space_for__2} The [[Sullivan model]] for the [[space of maps]] $Maps(S^3, S^4)$ from the [[3-sphere]] to the [[4-sphere]] is \begin{displaymath} CE \Big( \mathfrak{l} Maps \big( S^3, S^4 \big) \Big) \;=\; \left( \begin{aligned} d\, b_1 & = 0 \\ d\, \omega_4 & = 0 \\ d\, v_{{}_{4}} & = \omega_4 \wedge b_1 \\ d\, \omega_7 & = - \tfrac{1}{2} \, \omega_4 \wedge \omega_4 \end{aligned} \right) \end{displaymath} By \hyperlink{MollerRaussen85}{Møller-Raussen 85, Prop. 2.3}. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} [[!include flavours of cohomotopy -- table]] See also \begin{itemize}% \item [[rational cohomology]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{cocycle_spaces}{}\subsubsection*{{Cocycle spaces}}\label{cocycle_spaces} Discussion of [[cocycle spaces]] in [[rational Cohomotopy]] (see also at \emph{[[rational model for mapping spaces]]}): \begin{itemize}% \item [[Sadok Kallel]], [[Denis Sjerve]], \emph{On Brace Products and the Structure of Fibrations with Section}, 1999 (\href{https://www.math.ubc.ca/~sjer/brace.pdf}{pdf}, [[KallelSjerv99.pdf:file]]) \item [[Jesper Møller]], [[Martin Raussen]], \emph{Rational Homotopy of Spaces of Maps Into Spheres and Complex Projective Spaces}, Transactions of the American Mathematical Society Vol. 292, No. 2 (Dec., 1985), pp. 721-732 (\href{https://www.jstor.org/stable/2000242}{jstor:2000242}) \item J.-B. Gatsinzi, \emph{Rational Gottlieb Group of Function Spacesof Maps into an Even Sphere}, International Journal of Algebra, Vol. 6, 2012, no. 9, 427 - 432 (\href{http://www.m-hikari.com/ija/ija-2012/ija-9-12-2012/gatsinziIJA9-12-2012.pdf}{pdf}) \end{itemize} \hypertarget{on_superspaces}{}\subsubsection*{{On super-spaces}}\label{on_superspaces} The observation that the [[equations of motion]] of the [[supergravity C-field]] and its dual in [[D=11 N=1 supergravity]] characterize it as a [[cocycle]] in rational 4-Cohomotopy: \begin{itemize}% \item [[Hisham Sati]], Section 2.5 of: \emph{Framed M-branes, corners, and topological invariants}, J. Math. Phys. 59 (2018), 062304 (\href{http://arxiv.org/abs/1310.1060}{arXiv:1310.1060}) \end{itemize} Rational Cohomotopy of [[super-spaces]] (see also at \emph{[[geometry of physics -- fundamental super p-branes]]}): \begin{itemize}% \item [[Domenico Fiorenza]], [[Hisham Sati]], [[Urs Schreiber]]: \emph{[[schreiber:Rational sphere valued supercocycles in M-theory|Rational sphere valued supercocycles in M-theory and type IIA string theory]]}, Journal of Geometry and Physics, Volume 114, Pages 91-108 (2017) (\href{https://arxiv.org/abs/1606.03206}{arXiv:1606.03206}) \item [[Domenico Fiorenza]], [[Hisham Sati]], [[Urs Schreiber]]: \emph{[[schreiber:The WZW term of the M5-brane|The WZW term of the M5-brane and differential cohomotopy]]}, J. Math. Phys. 56, 102301 (2015) (\href{https://arxiv.org/abs/1506.07557}{arXiv:1506.07557}) (\textbf{\href{http://arxiv.org/abs/1506.07557}{arXiv:1506.07557}}) \end{itemize} Review in: \begin{itemize}% \item [[Domenico Fiorenza]], [[Hisham Sati]], [[Urs Schreiber]]: \emph{[[schreiber:The rational higher structure of M-theory]]}, in: \emph{Proceedings of the \href{http://www.maths.dur.ac.uk/lms/}{LMS-EPSRC Durham Symposium}:} \emph{\href{http://www.maths.dur.ac.uk/lms/109/index.html}{Higher Structures in M-Theory}, August 2018}m Fortschritte der Physik, 2019 (\href{https://arxiv.org/abs/1903.02834}{arXiv:1903.02834}) \end{itemize} \hypertarget{rational_equivariant_cohomotopy}{}\subsubsection*{{Rational equivariant Cohomotopy}}\label{rational_equivariant_cohomotopy} Discussion of [[rational equivariant homotopy theory|rational]] [[equivariant Cohomotopy]]: \begin{itemize}% \item [[John Huerta]], [[Hisham Sati]], [[Urs Schreiber]], \emph{[[schreiber:Equivariant homotopy and super M-branes|Real ADE-equivariant (co)homotopy and Super M-branes]]}, Comm. Math. Phys. 2019 (\href{https://arxiv.org/abs/1805.05987}{arXiv:1805.05987}) \end{itemize} \hypertarget{rational_twisted_cohomotopy}{}\subsubsection*{{Rational twisted Cohomotopy}}\label{rational_twisted_cohomotopy} Discussion of rational [[twisted Cohomotopy]]: \begin{itemize}% \item [[Domenico Fiorenza]], [[Hisham Sati]], [[Urs Schreiber]], Section 3 of \emph{[[schreiber:Twisted Cohomotopy implies M-theory anomaly cancellation]]} (\href{https://arxiv.org/abs/1904.10207}{arXiv:1904.10207}) \item [[Domenico Fiorenza]], [[Hisham Sati]], [[Urs Schreiber]], \emph{[[schreiber:Twisted Cohomotopy implies M5 WZ term level quantization|Twisted Cohomotopy implies level quantization of the full 6d Wess-Zumino-term of the M5-brane]]} (\href{https://arxiv.org/abs/1906.07417}{arXiv:1906.07417}) \end{itemize} [[!redirects rational Cohomotopy theory]] [[!redirects rational Cohomotopy cohomology theory]] [[!redirects rational cohomotopy]] [[!redirects rational cohomotopy theory]] [[!redirects rational cohomotopy cohomology theory]] \end{document}