\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{mathbbol} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{rational parameterized stable homotopy theory} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{stable_homotopy_theory}{}\paragraph*{{Stable Homotopy theory}}\label{stable_homotopy_theory} [[!include stable homotopy theory - contents]] \hypertarget{homological_algebra}{}\paragraph*{{Homological algebra}}\label{homological_algebra} [[!include homological algebra - contents]] \begin{quote}% under construction \end{quote} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{preliminaries}{Preliminaries}\dotfill \pageref*{preliminaries} \linebreak \noindent\hyperlink{chain_complexes}{Chain complexes}\dotfill \pageref*{chain_complexes} \linebreak \noindent\hyperlink{dgalgebras}{dg-Algebras}\dotfill \pageref*{dgalgebras} \linebreak \noindent\hyperlink{simplicial_lie_algebras}{Simplicial Lie algebras}\dotfill \pageref*{simplicial_lie_algebras} \linebreak \noindent\hyperlink{statement}{Statement}\dotfill \pageref*{statement} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} It is a classical fact that the [[rationalization]] of classical [[homotopy theory]] (of [[topological spaces]] or [[simplicial sets]]) -- called \emph{[[rational homotopy theory]]} -- is considerably more tractable than general [[homotopy theory]], as exhibited by the existence of small concrete [[dg-algebra|dg-algebraic]] models for [[rational homotopy types]]: [[minimal Sullivan algebras]] or equivalently their [[dual]] [[dg-coalgebras]]. A similar statement holds for the rationalization of [[stable homotopy theory]] i.e. the [[homotopy theory]] of [[spectra]] (of [[topological spaces]] or [[simplicial sets]]): rational spectra are equivalent to rational [[chain complexes]], i.e. to [[dg-modules]] over $\mathbb{Q}$. This is a dg-model for \emph{[[rational stable homotopy theory]]} compatible with that of classical rational homotopy theory in tat the [[stabilization]] adjunction that connects classical [[homotopy theory]] to [[stable homotopy theory]] is, under these identifications, modeled by the [[forgetful functor]] from dg-(co-)algebras to [[chain complexes]] \begin{displaymath} \itexarray{ & \text{classical homotopy theory} && \text{stable homotopy theory} \\ & spaces & \underoverset{\underset{\Sigma^\infty}{\longrightarrow}}{\overset{\Omega^\infty}{\longleftarrow}}{} & spectra \\ & & \text{stabilization} \\ \text{rationally} & \text{dg(co)algebras} & \underoverset{\underset{underlying}{\longrightarrow}}{\overset{free}{\longleftarrow}}{} & \text{chain complexes} } \end{displaymath} Classical [[homotopy theory]] and [[stable homotopy theory]] are unified and jointly generalized in [[parameterized stable homotopy theory]], whose [[objects]] are [[parameterized spectra]], parameterized over a classical [[homotopy type]]. The \emph{rational parameterized stable homotopy theory} to be discussed here is supposed to be the rationalization of this joint generalization, unifiying and jointly generalizing the algebraic model of [[rational topological spaces]] by [[Sullivan algebras]] and of $H \mathbb{Q}$-[[module spectra]] by [[chain complexes]]. \begin{displaymath} \itexarray{ & \text{stable homotopy theory} && \text{parameterized stable homotopy theory} && \text{classical homotopy theory} \\ & \text{spectra} &\overset{\phantom{\text{include}}}{\longrightarrow}& \text{parameterized spectra} &\overset{\phantom{\text{project}}}{\longrightarrow}& \text{spaces} \\ & &\text{include}& &\text{project}& \\ \text{rationally} & \text{chain complexes} &\overset{\phantom{\text{include}}}{\longrightarrow}& \text{dg-modules} &\overset{\phantom{\text{project}}}{\longrightarrow}& \text{dg(co)algebras} } \end{displaymath} Here we (intend to) show that, accordingly, rational parameterized homotopy theory is presented by the the [[opposite category|opposite]] of the [[homotopical category]] of [[dg-modules]] over cochain [[differential graded-commutative algebras]] in non-negative degrees. \begin{quote}% under construction \end{quote} \hypertarget{preliminaries}{}\subsection*{{Preliminaries}}\label{preliminaries} \hypertarget{chain_complexes}{}\subsubsection*{{Chain complexes}}\label{chain_complexes} \begin{defn} \label{ChainComplexes}\hypertarget{ChainComplexes}{} Write \begin{itemize}% \item $Ch_{\bullet,\mathbb{Q}}$ for the [[category of chain complexes]] of [[modules]]/[[vector spaces]] over $\mathbb{Q}$ (i.e. [[differential]] of degree -1) \item $Ch^{\bullet}_{\mathbb{Q}}$ for the category of [[cochain complexes]] (i.e. differential of degree +1). \end{itemize} For $n \in \mathbb{N}$ write \begin{itemize}% \item $Ch_{\geq n, \mathbb{Q}} \hookrightarrow Ch_{\bullet,\mathbb{Q}}$ for the [[full subcategory]] of the [[chain complexes]] concentrated in degree $\geq n$; \item $Ch^{\geq n}_{\mathbb{Q}} \hookrightarrow Ch^\bullet_{\mathbb{Q}}$ for the [[full subcategory]] of the [[cochain complexes]] concentrated in degree $\geq n$. \end{itemize} For $V \in \mathbb{Q} Mod$ a rational [[vector space]], and for $n \in \mathbb{N}$, we write $V[n]$ both for the [[chain complex]] as well as for the [[cochain complex]] concentrated on $V$ in degree $n$. \end{defn} \hypertarget{dgalgebras}{}\subsubsection*{{dg-Algebras}}\label{dgalgebras} \begin{defn} \label{dgcAlgebras}\hypertarget{dgcAlgebras}{} Write $dgcAlg^{\geq 0}_{\mathbb{q}}$ for the [[category]] of cochain [[dgc-algebras]] over the [[rational numbers]] concentrated in non-negative degrees. Say that a [[morphism]] in this category is \begin{enumerate}% \item a \emph{weak equivalence} if it is a [[quasi-isomorphisms]] on the [[forgetful functor|underlying]] [[chain complexes]]; \item a \emph{fibration} if it is degreewise [[surjection]]; \item a \emph{cofibration} it it is a [[relative Sullivan algebra]] inclusion, \end{enumerate} We write \begin{displaymath} (dgcAlg^{\geq 0}_{\mathbb{Q}})_{proj} \end{displaymath} for the category $dgcAlg^{\geq 0}_{\mathbb{Q}}$ equipped with these three [[classes]] of morphisms. \end{defn} \begin{prop} \label{dgcAlgProjectiveModelStructure}\hypertarget{dgcAlgProjectiveModelStructure}{} The [[homotopical category]] $(dgcAlg^{\geq 0}_{\mathbb{Q}})_{proj}$ from def. \ref{dgcAlgebras} is a [[model category]], to be called the \emph{[[projective model structure on dgc-algebras]] in non-negative degrees}. \end{prop} (\hyperlink{BousfieldGugenheim76}{Bousfield-Gugenheim 76, theorem 4.3}) \begin{example} \label{DifferentialFormsPolynomial}\hypertarget{DifferentialFormsPolynomial}{} For $S \in sSet$ a [[simplicial set]], write \begin{displaymath} \Omega^\bullet_{poly}(S) \in dgcAlg^{\geq 0}_{\mathbb{Q}} \end{displaymath} for the [[polynomial differential forms]] with [[rational number|rational]] [[coefficients]] on $S$. \end{example} (\hyperlink{BousfieldGugenheim76}{Bousfield-Gugenheim 76, def. 2.1}) \begin{defn} \label{SliceModelStructureOnAugmenteddgcalg}\hypertarget{SliceModelStructureOnAugmenteddgcalg}{} Write $\mathbb{Q}[0] \coloneqq (\mathbb{Q}[0], d = 0)$ for the [[dgc-algebra]] concentrated on the [[ground field]] in degree 0, necessarily with vanishing [[differential]]. This is the [[initial object]] in $dgcAlg^{\geq 0}_{\mathbb{Q}}$. Write \begin{displaymath} (dgcAlg^{\geq 0}_{\mathbb{Q}})_{/\mathbb{Q}[0]} \end{displaymath} for the [[slice category]] of that of all [[dgc-algebras]] (def. \ref{dgcAlgebras}) over $\mathbb{Q}[0]$. Hence an [[object]] in this category is a pair consisting of a [[dgc-algebra]] $A$ and a dg-algebra [[homomorphism]] of the form \begin{displaymath} \epsilon_A \;\colon\; A \longrightarrow \mathbb{Q}[0] \,. \end{displaymath} This is equivalently called a \emph{$\mathbb{Q}[0]$-[[augmented algebra|augmented]] dgc-algebra}. The [[kernel]] of the augmentation map $\epsilon$ \begin{displaymath} ker_{\epsilon_{A}} \in Ch^{\geq 0}_{\mathbb{Q}} \end{displaymath} is the \emph{[[augmentation ideal]]} of $(A,\epsilon)$. Since $\mathbb{Q}[0] \in dgcAlg^{\geq 0}_{\mathbb{Q}}$ carries a unique augmentation $\epsilon = id$, we still write $\mathbb{Q}[0]$ for the [[ground field]] regarded as an augmented dgc-algebra. As such this is now a [[zero object]]. Furthermore write \begin{displaymath} \left( (dgcAlg^{\geq 0}_{\mathbb{Q}})_{/\mathbb{Q}[0]} \right)_{proj} \end{displaymath} for the [[slice model structure]] induced on this by the [[projective model structure on dgc-algebras]] according to prop. \ref{dgcAlgProjectiveModelStructure}. \end{defn} See also \hyperlink{BousfieldGugenheim76}{Bousfield-Gugenheim 76, 4.11} \hypertarget{simplicial_lie_algebras}{}\subsubsection*{{Simplicial Lie algebras}}\label{simplicial_lie_algebras} \begin{displaymath} (LieAlg_k)^{\Delta^{op}}_{proj} \underoverset {\underset{N}{\longrightarrow}} {\overset{N^\ast}{\longleftarrow}} {\bot} (dgLieAlg_k)_{proj} \underoverset {\underset{CE}{\longrightarrow}} {\overset{\mathcal{L}}{\longleftarrow}} {\bot} dgcoAlg_k \end{displaymath} (\ldots{}) \hypertarget{statement}{}\subsection*{{Statement}}\label{statement} We want to claim the following: For every $\mathfrak{g} \in (LieAlg_{\mathbb{Q}})^{\Delta^{op}}$ there is a [[Quillen equivalence]] \begin{displaymath} SeqSpec\left( \mathfrak{g}Mod \right)_{stable} \underoverset {\underset{SeqSpec((Sym)^{op})}{\longrightarrow}} { \overset{SeqSpec( ker_{\epsilon(-)}^{op} )}{\longleftarrow} } {\simeq_{Qu}} SeqSpec\left( \mathfrak{g} / (LieAlg_{\mathbb{Q}})^{\Delta^{op}} / \mathfrak{g} \right)_{stable} \end{displaymath} Idea of proof: the analogous statement for simplicial Lie algebras replaced by rational [[simplicial algebras]] $cAlg_{\mathbb{A}}^{\Delta^{op}}$ is \hyperlink{Schwede97}{Schwede 97, theorem 3.2.3}. Apart from the connectivity of the $Sym$-construction, all that this proof uses is that simplicial commutative algebras form a [[proper model category|right proper]] [[simplicial model category]]. But also the [[model structure on simplicial Lie algebras]] is right proper and simplicial. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[rational model for a suspension]] \item [[rational homotopy theory]] \item [[rational stable homotopy theory]] \item [[rational equivariant homotopy theory]] \item [[rational equivariant stable homotopy theory]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} A classical reference on plain [[rational homotopy theory]] is \begin{itemize}% \item [[Aldridge Bousfield]], V. K. A. M. Gugenheim, \emph{On PL deRham theory and rational homotopy type} , Memoirs of the AMS, vol. 179 (1976) \end{itemize} The equivalence between $H R$-module spectra (unparametrized) and $R$-chain complexes is due to \begin{itemize}% \item [[Stefan Schwede]], section 3 of \emph{Spectra in model categories and applications to the algebraic cotangent complex}, Journal of Pure and Applied Algebra 120 (1997) 104 (\href{http://www.math.uni-bonn.de/people/schwede/modelspec.pdf}{pdf}) \item [[Brooke Shipley]], \emph{$H \mathbb{Z}$-algebra spectra are differential graded algebras} , Amer. Jour. of Math. 129 (2007) 351-379. (\href{http://arxiv.org/abs/math/0209215}{arXiv:math/0209215}) \end{itemize} Discussion of rational fiberwise [[suspension spectra]] is in \begin{itemize}% \item Michael Charles Crabb, [[Ioan James]], around Prop. 15.8 of \emph{Fibrewise Homotopy Theory}, Springer Monographs in Mathematics, 1998 \item [[Yves Félix]], Aniceto Murillo [[Daniel Tanré]], \emph{Fibrewise stable rational homotopy}, Journal of Topology, Volume 3, Issue 4, 2010, Pages 743–758 (\href{https://doi.org/10.1112/jtopol/jtq023}{doi:10.1112/jtopol/jtq023}) \end{itemize} A discussion of full blown rational parametrized stable homotopy theory is due to \begin{itemize}% \item [[Vincent Braunack-Mayer]], \emph{[[schreiber:thesis Braunack-Mayer|Rational parameterized stable homotopy theory]]}, Zurich, 2018 \item [[Vincent Braunack-Mayer]], \emph{Strict algebraic models for rational parametrised spectra I} (\href{https://arxiv.org/abs/1910.14608}{arXiv:1910.14608}) \end{itemize} Application to mathematical analysis of [[duality between M-theory and type IIA string theory]]: \begin{itemize}% \item [[Vincent Braunack-Mayer]], [[Hisham Sati]], [[Urs Schreiber]], \emph{[[schreiber:Gauge enhancement of Super M-Branes|Gauge enhancement of Super M-Branes rational parameterized stable homotopy theory]]}, Communications in Mathematical Physics 371: 197 (2019) (\href{https://arxiv.org/abs/1806.01115}{arXiv:1806.01115}, \href{https://doi.org/10.1007/s00220-019-03441-4}{doi:10.1007/s00220-019-03441-4}) \item [[Vincent Braunack-Mayer]], \emph{[[schreiber:Parametrised homotopy theory and gauge enhancement]]}, talk at \emph{\href{http://www.maths.dur.ac.uk/lms/109/index.html}{Higher Structures in M-Theory}} Durham Symposium 2018 , Fortschritte der Physik (2019) (\href{https://onlinelibrary.wiley.com/doi/abs/10.1002/prop.201910003}{doi:10.1002/prop.201910003}m \href{https://arxiv.org/abs/1903.02862}{arXiv:1903.02862}) \end{itemize} [[!redirects rational parametrized stable homotopy theory]] \end{document}