\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{rational stable homotopy theory} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{stable_homotopy_theory}{}\paragraph*{{Stable Homotopy theory}}\label{stable_homotopy_theory} [[!include stable homotopy theory - contents]] \hypertarget{homological_algebra}{}\paragraph*{{Homological algebra}}\label{homological_algebra} [[!include homological algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{rational_spectra}{Rational spectra}\dotfill \pageref*{rational_spectra} \linebreak \noindent\hyperlink{RationalStabilization}{Rational stabilization}\dotfill \pageref*{RationalStabilization} \linebreak \noindent\hyperlink{appendix}{Appendix}\dotfill \pageref*{appendix} \linebreak \noindent\hyperlink{chain_complexes}{Chain complexes}\dotfill \pageref*{chain_complexes} \linebreak \noindent\hyperlink{dgcalgebras}{dgc-Algebras}\dotfill \pageref*{dgcalgebras} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Rational stable homotopy theory is the simple special case of [[stable homotopy theory]] under [[rationalization]]. It is a classical fact that the [[rationalization]] of classical [[homotopy theory]] (of [[topological spaces]] or [[simplicial sets]]) -- called \emph{[[rational homotopy theory]]} -- is considerably more tractable than general [[homotopy theory]], as exhibited by the existence of small concrete [[dg-algebra|dg-algebraic]] models for [[rational homotopy types]]: [[minimal Sullivan algebras]] or equivalently their [[dual]] [[dg-coalgebras]]. A similar statement holds for the rationalization of [[stable homotopy theory]] i.e. the [[homotopy theory]] of [[spectra]] (of [[topological spaces]] or [[simplicial sets]]): rational spectra are equivalent to rational [[chain complexes]], i.e. to [[dg-modules]] over $\mathbb{Q}$. This is a dg-model for \emph{rational stable homotopy theory} compatible with that of classical rational homotopy theory in that the [[stabilization]] adjunction that connects classical [[homotopy theory]] to [[stable homotopy theory]] is, under these identifications, modeled by the [[forgetful functor]] from dg-(co-)algebras to [[chain complexes]] \begin{displaymath} \itexarray{ & \text{classical homotopy theory} && \text{stable homotopy theory} \\ & spaces & \underoverset{\underset{\Sigma^\infty}{\longrightarrow}}{\overset{\Omega^\infty}{\longleftarrow}}{} & spectra \\ & & \text{stabilization} \\ \text{rationally} & \text{dg(co)algebras} & \underoverset{\underset{underlying}{\longrightarrow}}{\overset{free}{\longleftarrow}}{} & \text{chain complexes} } \end{displaymath} \hypertarget{rational_spectra}{}\subsection*{{Rational spectra}}\label{rational_spectra} \begin{theorem} \label{RationalStableDoldKanCorrespondence}\hypertarget{RationalStableDoldKanCorrespondence}{} By the [[stable Dold-Kan correspondence]], the ([[stable homotopy theory|stable]]) [[homotopy theory]] of \emph{[[rationalization|rationalized]] [[spectra]]}, namely of $H \mathbb{Q}$-[[module spectra]] is [[equivalence of (infinity,1)-categories|equivalent]] to that of [[chain complexes]] of [[modules]]/[[vector space]] over the [[rational numbers]] \begin{displaymath} H \mathbb{Q} ModSpectra \;\simeq\; Ch_\bullet(\mathbb{Q}) \,. \end{displaymath} \end{theorem} (\hyperlink{SchwedeShipley03}{Schwede-Shipley 03, theorem 5.1.6}) \begin{remark} \label{}\hypertarget{}{} Observe that $H \mathbb{Q}$-module spectra are just the rational spectra. Since [[rationalization]] of spectra is the [[smashing localization]] $(-)\wedge H \mathbb{Q}$ (\href{rationalization#RationalizationOfSpectra}{here}) every rational spectrum $X \simeq H \mathbb{Q} \wedge X$ carries an $H \mathbb{Q}$-module structure. Conversely, just as a $\mathbb{Q}$-[[module]] structure on an [[abelian group]] is unique if it exists, so an $H \mathbb{Q}$-[[module spectrum]] structure on a [[spectrum]] is essentially unique if it exists, due to the fact that the multiplication map $H \mathbb{Q} \wedge H \mathbb{Q} \to H \mathbb{Q}$ is an [[equivalence in an (infinity,1)-category|equivalence]]. \end{remark} Theorem \ref{RationalStableDoldKanCorrespondence} parallels that of classical [[rational homotopy theory]]: \begin{theorem} \label{ClassicalRationalHomotopyTheory}\hypertarget{ClassicalRationalHomotopyTheory}{} There is an [[equivalence of (infinity,1)-categories|equivalence of homotopy theories]] between the [[homotopy theory]] of [[nilpotent topological space|nilpotent]] [[rational topological spaces]] of [[finite type]] with that of cochain [[dgc-algebras]] over $\mathbb{Q}$ in non-negative degree \begin{displaymath} \infty Grpd_{\mathbb{Q}, nil,fin} \;\simeq\; dgcAlg^{\geq 0}_{\mathbb{Q},nil,fin} \end{displaymath} \end{theorem} \hypertarget{RationalStabilization}{}\subsection*{{Rational stabilization}}\label{RationalStabilization} \begin{prop} \label{RationalStabilizationModel}\hypertarget{RationalStabilizationModel}{} The following composite total [[derived functors]] \begin{displaymath} \itexarray{ \mathrm{Ho}( \mathrm{Spectra}_{\mathbb{Q}, \mathrm{fin}} ) \\ \downarrow \simeq \uparrow \\ \mathrm{Ho}( \mathrm{Ch}_{\mathbb{Q},\bullet,\mathrm{fin}} ) & \underoverset \underset{\mathbb{R}\mathrm{cn}_2}{\longrightarrow} \overset{\mathbb{L} i_2}{\longleftarrow} {\bot} & \mathrm{Ho}( \mathrm{Ch}_{\mathbb{Q}, \gt 1, \mathrm{fin}} ) \\ && \downarrow \simeq \uparrow^{(-)^\ast} \\ && \mathrm{Ho}( \mathrm{Ch}^{\gt 1}_{\mathbb{Q}, \mathrm{fin}} )^{\mathrm{op}} & \underoverset \underset{ (\mathbb{L}\mathrm{Sym}_{/\mathbb{Q}[0]})^{\mathrm{op}} }{\longrightarrow} \overset{ (\mathbb{R}( U \circ \mathrm{ker}(\epsilon_{(-)}) ))^{\mathrm{op}} }{\longleftarrow} {\bot} & \mathrm{Ho}( \mathrm{dgcAlg}^{\gt 0}_{\mathbb{Q}, \mathrm{fin}})_{/\mathbb{Q}[0]} )^{\mathrm{op}} \\ && && \updownarrow \simeq \\ && && \mathrm{Ho}(\mathrm{Top}_{\mathbb{Q}, \gt 1 , \mathrm{fin}}) } \end{displaymath} (where the key part in the middle right, involving $Sym$, is from prop. \ref{dgcAlgChAdjunction}, the left middle part involving connectivity is from prop. \ref{ChainComplexesConnectiveCover}, and the equivalences on the far left and far right are those from theorem \ref{RationalStableDoldKanCorrespondence} and theorem \ref{ClassicalRationalHomotopyTheory}, respectively) agree with the restriction of the [[stabilization]] [[adjoint (infinity,1)-functor|infinity-adjunction]] \begin{displaymath} Spectra \underoverset {\underset{\Omega^\infty}{\longrightarrow}} {\overset{\Sigma^\infty}{\longleftarrow}} {\bot} \infty Grpd^{\ast/} \end{displaymath} to simply connected rational homotopy types of finite type. \end{prop} \begin{proof} By the nature of the classical model structure on topological spaces, every simply connected object of $\mathrm{Ho}(\mathrm{Top}^{\ast/})$ is represented by one that is a [[retract]] of a [[transfinite composition]] of [[pushouts]] of the pointed connected generating cofibrations $S^n \to D^n$, for $n \geq 1$. More abstractly, the [[(∞,1)-category]] of simply connected homotopy types is generated under [[(∞,1)-colimits]] from the [[n-spheres]] of dimension $n \geq 2$. (See the analogous argument used in the [[Brown representability theorem]] \href{Brown%20representability%20theorem#TheClassicalPointedConnectedHomotopyCategoryAsDomainForTheAbstractBrownRepresentabilityTheorem}{here}). Since $\Sigma^\infty$ is a left adjoint functor it is sufficient to check that the two functors agree on $S^n$ for $n \geq 1$. That they agree on $D^n$ is immediate. We hence need to consider their value on the positive dimensional $n$-spheres: Let $n$ be odd. Then the [[minimal Sullivan model]] for $S^n$ is $\mathrm{Sym}( \mathbb{R}[n] )$. Since every dgc-algebra is fibrant in the projective model structure, the value of $\mathbb{R}(U \circ \mathrm{ker}(\epsilon_{(-)}))$ on this model is represented by the value of $U \circ \mathrm{ker}(\epsilon_{(-)})$ on that model, which is the cochain complex $\mathbb{Q}[n]$, hence equivalently the corresponding chain complex. This is indeed the rationalization of $\Sigma^\infty S^n$. Next let $n$ be even with $n \geq 1$. Then the minimal Sullivan model for $S^n$ is $\mathrm{Sym}( \mathbb{R}[n] \oplus \mathbb{R}[2n-1], d c_{2n-1} = c_{n} \wedge c_n )$. The underlying chain complex of the augmentation ideal is spanned by the elements $c_{n}^{\wedge^k}$ in degree $n k$ and by the elements $c_{n}^{\wedge^k} \wedge c_{2n-1}$ in degree $nk+2n-1$. The former elements are all closed, but except for $k = 1$ are all in the image of the latter elements, none of which is closed. Hence this chain complex is quasi-isomorphic to $\mathbb{R}[n]$. Again, this is indeed the rationalization of $\Sigma^\infty S^{n}$ \end{proof} \hypertarget{appendix}{}\subsection*{{Appendix}}\label{appendix} Here collect some background definitions, notations and facts for ease of reference in the main text above. \hypertarget{chain_complexes}{}\subsubsection*{{Chain complexes}}\label{chain_complexes} Throughout, let $k$ be a [[field]] of [[characteristic zero]]. \begin{defn} \label{}\hypertarget{}{} Write \begin{enumerate}% \item $\mathrm{Ch}_{k,\bullet}$ for the [[category of chain complexes]] of $k$-[[vector spaces]], i.e. the category of $\mathbb{Z}$-graded $k$-vector spaces $V$ equipped with a linear map $\partial_V : V \to V$ of degree -1 such that $\partial_V \circ \partial_V = 0$ (the [[differential]]); \item $\mathrm{Ch}_k^\bullet$ for the category of [[cochain complexes]] of $k$-vector spaces, i.e. as before, but with differential $d_V$ of degree +1. \end{enumerate} For $V$ a $k$-vector space, and $n \in \mathbb{N}$ we write $V[n]$ for the (co-)chain complex concentrated on $V$ in degree $k$. For $n \in \mathbb{Z}$ write \begin{displaymath} \mathrm{Ch}_{k, \geq n} \overset{i_n}{\hookrightarrow} \mathrm{Ch}_{k,\bullet} \end{displaymath} \begin{displaymath} \mathrm{Ch}_k^{\geq n} \overset{i^n}{\hookrightarrow} \mathrm{Ch}_k^\bullet \end{displaymath} for the [[full subcategories]] on the (co-)chain complexes that are concentrated in degrees $\geq n$. \end{defn} \begin{prop} \label{ChainComplexesConnectiveCover}\hypertarget{ChainComplexesConnectiveCover}{} The inclusions from def. \ref{Complexes} have right resp. left adjoints, which we denote by \begin{displaymath} \mathrm{Ch}_{k,\bullet} \underoverset {\underset{\mathrm{cn}_n}{\longrightarrow}} {\overset{i_n}{\longleftarrow}} {\bot} \mathrm{Ch}_{k, \geq n} \end{displaymath} and \begin{displaymath} \mathrm{Ch}^{\geq 0}_k \underoverset {\underset {i_n}{\longrightarrow}} {\overset{\mathrm{cn}^n}{\longleftarrow}} {\bot} \mathrm{Ch}^\bullet_k \,. \end{displaymath} These are [[Quillen adjunctions]] with respect to the [[projective model structure on chain complexes]]. \end{prop} \hypertarget{dgcalgebras}{}\subsubsection*{{dgc-Algebras}}\label{dgcalgebras} \begin{defn} \label{dgcalgebras}\hypertarget{dgcalgebras}{} We write $\mathrm{dgcAlg}^\bullet_k$ for the category of [[differential graded-commutative algebras]] over $k$, i.e. commutative monoids in $\mathrm{Ch}^\bullet_k$. We write $(\mathrm{dgcAlg}^\bullet_k)_{/k[0]}$ for its [[slice category]] over $k = (k[0], d = 0) \in \mathrm{dgcAlg}^{\geq 0}$, hence for the category of [[augmented algebra|augmented]] dgc-algebras, hence for dgc-algebras $A$ equipped with a homomorphism $\epsilon_A : A \to (k[0], d = 0)$. Finally we write \begin{displaymath} \mathrm{dgcAlg}^{\geq 0}_k \hookrightarrow \mathrm{dgcAlg}^\bullet_k \end{displaymath} for the full subcategory of the dgc-algebras in non-negative degree, hence for the commutative monoids in $\mathrm{Ch}^{\geq 0}$, and similarly for the augmented case \begin{displaymath} (\mathrm{dgcAlg}^{\geq 0}_k)_{/k[0]} \hookrightarrow (\mathrm{dgcAlg}^{\bullet}_k)_{/k[0]} \,. \end{displaymath} \end{defn} \begin{prop} \label{dgcAlgChAdjunction}\hypertarget{dgcAlgChAdjunction}{} There are [[adjunctions]] between the categories from def. \ref{dgcalgebras} of the form \begin{displaymath} \mathrm{dgcAlg}^{\geq 0}_k \underoverset {\underset{U}{\longrightarrow}} {\overset{\mathrm{Sym}}{\longleftarrow}} {\bot} \mathrm{Ch}^{\geq 0}_k \end{displaymath} and \begin{displaymath} (\mathrm{dgcAlg}^{\geq 0}_k)_{/k[0]} \underoverset {\underset{U \circ \mathrm{ker}(\epsilon_{(-)})}{\longrightarrow} } {\overset{\mathrm{Sym}_{/k[0]}}{\longleftarrow}} {\bot} \mathrm{Ch}^{\geq 0}_k \end{displaymath} where \begin{enumerate}% \item $U$ forms the underlying chain complex; \item $\mathrm{ker}(\epsilon_{(-)})$ forms the [[augmentation ideal]]; \item $\mathrm{Sym}$ forms the free graded-commutative dg-algebra; \item $\mathrm{Sym}_{/k[0]}$ forms the free graded-commutative dg-algebra and regards it with its canonical augmentation over $k$. \end{enumerate} Moreover, these are [[Quillen adjunctions]]: the first with respect to the [[projective model structure on chain complexes]] and the [[projective model structure on dgc-algebras]] and the second with respect to the corresponding [[slice model structure]]. \end{prop} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[rational homotopy theory]] \item [[rational parameterized stable homotopy theory]] \item [[rational equivariant homotopy theory]] \item [[rational equivariant stable homotopy theory]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Stefan Schwede]], [[Brooke Shipley]], \emph{Stable model categories are categories of modules} , Topology 42 (2003), 103-153 (\href{http://www.math.uic.edu/~bshipley/classTopFinal.pdf}{pdf}) \end{itemize} [[!redirects stable rational homotopy theory]] \end{document}