\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{rationalization} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{rational_homotopy_theory}{}\paragraph*{{Rational homotopy theory}}\label{rational_homotopy_theory} [[!include differential graded objects - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{rationalization_of_a_single_space}{Rationalization of a single space}\dotfill \pageref*{rationalization_of_a_single_space} \linebreak \noindent\hyperlink{rationalization_as_a_localization_of_}{Rationalization as a localization of $Top$/$\infty Grpd$}\dotfill \pageref*{rationalization_as_a_localization_of_} \linebreak \noindent\hyperlink{Properties}{Properties}\dotfill \pageref*{Properties} \linebreak \noindent\hyperlink{preservation_of_homotopy_pullbacks}{Preservation of homotopy pullbacks}\dotfill \pageref*{preservation_of_homotopy_pullbacks} \linebreak \noindent\hyperlink{RationalizationOfSpectra}{Rationalization of spectra}\dotfill \pageref*{RationalizationOfSpectra} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In [[rational homotopy theory]] one considers [[topological spaces]] $X$ only up to maps that induce [[isomorphisms]] on \emph{rationalized} [[homotopy groups]] $\pi_\bullet(X) \otimes_{\mathbb{Z}} \mathbb{Q}$ (as opposed to genuine [[weak homotopy equivalences]], which are those maps that induce [[isomorphism]] on the genuine [[homotopy groups]].) Every simply connected space is in this sense equivalent to a [[rational space]]: this is its \textbf{rationalization}. Similarly one may consider ``real-ification'' by considering $\pi_\bullet(X) \otimes_{\mathbb{Z}} \mathbb{R}$, etc. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{rationalization_of_a_single_space}{}\subsubsection*{{Rationalization of a single space}}\label{rationalization_of_a_single_space} A \textbf{rationalization} of a [[simply connected space|simply connected]] [[topological space]] $X$ is a continuous map $\phi : X \to Y$ where \begin{itemize}% \item $Y$ is a [[simply connected space|simply connected]] [[rational space]]; \item $\phi$ induces an [[isomorphism]] on rationalized [[homotopy group]]s: \begin{displaymath} \pi_\bullet(\phi)\otimes \mathbb{Q} : \pi_\bullet(X) \otimes \mathbb{Q} \stackrel{\simeq}{\to} \pi_\bullet(Y) \otimes \mathbb{Q} \end{displaymath} or equivalently if $\phi$ induces an isomorphism on rational [[homology]] groups \begin{displaymath} H_\bullet(\phi,\mathbb{Q}) : H_\bullet(X,\mathbb{Q}) \stackrel{\simeq}{\to} H_\bullet(Y,\mathbb{Q}) \,. \end{displaymath} \end{itemize} \hypertarget{rationalization_as_a_localization_of_}{}\subsubsection*{{Rationalization as a localization of $Top$/$\infty Grpd$}}\label{rationalization_as_a_localization_of_} In [[rational homotopy theory]] one considers the [[Quillen adjunction]] \begin{displaymath} (\Omega^\bullet \dashv K) : dgAlg_{\mathbb{Q}} \stackrel{\overset{\Omega^\bullet}{\leftarrow}}{\underset{K}{\to}} sSet \end{displaymath} between the [[model structure on dg-algebras]] and the standard [[model structure on simplicial sets]], where $\Omega^\bullet$ is forming [[Sullivan differential forms]]: \begin{displaymath} \Omega^\bullet(X) = Hom_{sSet}(X, \Omega^\bullet_{pl}(\Delta^\bullet_{Diff})) \,. \end{displaymath} Intrinsically this should model something like the (partially) left exact [[localization of an (∞,1)-category]] of [[∞Grpd]] at those morphisms that are [[rational homotopy equivalence]]s. \begin{displaymath} \infty Grpd_{ratio} \stackrel{\leftarrow}{\hookrightarrow} \infty Grpd \,. \end{displaymath} Below we review classical results that says that the left [[adjoint (infinity,1)-functor]] here indeed preserves at least [[homotopy pullback]]s. More generally, a setup by [[Bertrand Toen]] serves to provide a more comprehensive description of this situtation: see [[rational homotopy theory in an (infinity,1)-topos]]. \hypertarget{Properties}{}\subsection*{{Properties}}\label{Properties} \hypertarget{preservation_of_homotopy_pullbacks}{}\subsubsection*{{Preservation of homotopy pullbacks}}\label{preservation_of_homotopy_pullbacks} \begin{theorem} \label{}\hypertarget{}{} The left [[derived functor]] of the [[Quillen functor|Quillen left adjoint]] $\Omega^\bullet : sSet \to dgAlg_{\mathbb{Q}}$ preserves [[homotopy pullbacks]] of objects of [[finite type]] (each rational homotopy group is a [[finite dimensional vector space]] over the [[ground field]]). In other words in the induced pair of [[adjoint (∞,1)-functors]] \begin{displaymath} (\Omega^\bullet \dashv K) : (dgAlg_\mathbb{Q}^{op})^\circ \stackrel{\overset{}{\leftarrow}}{\underset{}{\to}} \infty Grpd \end{displaymath} the left adjoint preserves [[limit in a quasi-category|(∞,1)-categorical pullbacks]] of objects of finite type. \end{theorem} \begin{proof} This is effectively a restatement of a result that appears effectively below proposition 15.8 in HalperinThomas and is reproduced in some repackaged form as theorem 2.2 of \href{http://www.math.uic.edu/~bshipley/hess_ratlhtpy.pdf}{He06}. We recall the [[model category|model category-theoretic]] context that allows to rephrase this result in the above form. Let $C = \{a \to c \leftarrow b\}$ be the pullback [[diagram]] category. The [[homotopy limit]] functor is the right [[derived functor]] $\mathbb{R} lim_C$ for the [[Quillen adjunction]] (described in detail at [[homotopy Kan extension]]) \begin{displaymath} [C,sSet]_{inj} \stackrel{\overset{const}{\leftarrow}}{\underset{lim_C}{\to}} sSet \,. \end{displaymath} At [[model structure on functors]] it is discussed that composition with the Quillen pair $\Omega^\bullet \dashv K$ induces a Quillen adjunction \begin{displaymath} ([C,\Omega^bullet] \dashv [C,K]) : [C, dgAlg^{op}] \stackrel{\overset{[C,\Omega^\bullet]}{\leftarrow}}{\underset{[C,K]}{\to}} [C,sSet] \,. \end{displaymath} We need to show that for every fibrant and cofibrant pullback diagram $F \in [C,sSet]$ there exists a weak equivalence \begin{displaymath} \Omega^\bullet \circ lim_C F \;\; \simeq \;\; lim_C \widehat{\Omega^\bullet(F)} \,, \end{displaymath} here $\widehat{\Omega^\bullet(F)}$ is a fibrant replacement of $\Omega^\bullet(F)$ in $dgAlg^{op}$. Every object $f \in [C,sSet]_{inj}$ is cofibrant. It is fibrant if all three objects $F(a)$, $F(b)$ and $F(c)$ are fibrant and one of the two morphisms is a fibration. Let us assume without restriction of generality that it is the morphism $F(a) \to F(c)$ that is a fibration. So we assume that $F(a), F(b)$ and $F(c)$ are three [[Kan complex]]es and that $F(a) \to F(b)$ is a [[Kan fibration]]. Then $lim_C$ sends $F$ to the ordinary [[pullback]] $lim_C F = F(a) \times_{F(c)} F(b)$ in $sSet$, and so the left hand side of the above equivalence is \begin{displaymath} \Omega^\bullet(F(a) \times_{F(c)} F(b)) \,. \end{displaymath} Recall that the [[Sullivan algebra]]s are the cofibrant objects in $dgAlg$, hence the fibrant objects of $dgAlg^{op}$. Therefore a fibrant replacement of $\Omega^\bullet(F)$ may be obtained by \begin{itemize}% \item first choosing a [[Sullivan model]] $(\wedge^\bullet V, d_V) \stackrel{\simeq}{\to} \Omega^\bullet(c)$ \item then choosing factorizations in $dgAlg$ of the composites of this with $\Omega^\bullet(F(c)) \to \Omega^\bullet(F(a))$ and $\Omega^\bullet(F(c)) \to \Omega^\bullet(F(b))$ into cofibrations follows by weak equivalences. \end{itemize} The result is a diagram \begin{displaymath} \itexarray{ (\wedge^\bullet U^*, d_U) &\leftarrow& (\wedge^\bullet V^*, d_V) &\hookrightarrow& (\wedge^\bullet W^* , d_W) \\ \downarrow^{\simeq} && \downarrow^{\simeq} && \downarrow^{\simeq} \\ \Omega^\bullet(F(a)) &\stackrel{}{\leftarrow}& \Omega^\bullet(F(c)) &\stackrel{}{\to}& \Omega^\bullet(F(b)) } \end{displaymath} that in $dgAlg^{op}$ exhibits a fibrant replacement of $\Omega^\bullet(F)$. The limit over that in $dgAlg^{op}$ is the colimit \begin{displaymath} (\wedge^\bullet U^* , d_U) \otimes_{(\wedge^\bullet V^* , d_V)} (\wedge^\bullet W^* , d_W) \end{displaymath} in $dgAlg$. So the statement to be proven is that there exists a weak equivalence \begin{displaymath} (\wedge^\bullet U^* , d_U) \otimes_{(\wedge^\bullet V^* , d_V)} (\wedge^\bullet W^* , d_W) \simeq \Omega^\bullet(F(a) \times_{F(c)} F(b)) \,. \end{displaymath} This is precisely the statement of that quoted result \href{http://www.math.uic.edu/~bshipley/hess_ratlhtpy.pdf}{He, theorem 2.2}. \end{proof} \begin{quote}% check the following \end{quote} \begin{cor} \label{}\hypertarget{}{} Rationalization preserves homotopy pullbacks of objects of finite type. \end{cor} \begin{proof} The theory of [[Sullivan model]]s asserts that rationalization of a space $X$ (a simplicial set $X$) is the derived unit of the derived adjunction $(\Omega^\bullet \dashv K)$, namely that the rationalization is modeled by $K$ applied to a Sullivan model $(\wedge^\bullet V^*, d)$ for $\Omega^\bullet(X)$. \begin{displaymath} X \to K \Omega^\bullet(X) \stackrel{\simeq}{\leftarrow} K \widehat {\Omega^\bullet(X)} := K (\wedge^\bullet V^* , d_V) \,. \end{displaymath} Being a Quillen right adjoint, the right derived functor of $K$ of course preserves homotopy limits. Hence the composite $K \circ \widehat{\Omega^\bullet(-)}$ preserves homotopy pullbacks between objects of finite type. \end{proof} \hypertarget{RationalizationOfSpectra}{}\subsubsection*{{Rationalization of spectra}}\label{RationalizationOfSpectra} On [[spectra]], rationalization is a [[smashing localization]], given by [[smash product]] with the [[Eilenberg-MacLane spectrum]] $H \mathbb{Q}$. (e.g. \hyperlink{Bauer11}{Bauer 11, example 1.7 (4)}). For more see at \emph{[[rational stable homotopy theory]]}. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[p-localization]], [[p-completion]] \item [[fracture square]] \item [[rational homotopy theory]] \item [[rational equivariant stable homotopy theory]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Around definition 1.4 in \begin{itemize}% \item [[Kathryn Hess]], \emph{Rational homotopy theory: a brief introduction} (\href{http://arxiv.org/abs/math.AT/0604626}{arXiv:math/0604626}) \item [[Tilman Bauer]], \emph{Bousfield localization and the Hasse square} (2011) (\href{http://math.mit.edu/conferences/talbot/2007/tmfproc/Chapter09/bauer.pdf}{pdf}) \end{itemize} [[!redirects rationalizations]] [[!redirects rationalisation]] [[!redirects rationalisations]] \end{document}