\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{real numbers object} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{Topos Theory}}\label{topos_theory} [[!include topos theory - contents]] \hypertarget{real_numbers_object}{}\section*{{Real numbers object}}\label{real_numbers_object} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{constructions}{Constructions}\dotfill \pageref*{constructions} \linebreak \noindent\hyperlink{in_a_topos_with_an_nno}{In a topos with an NNO}\dotfill \pageref*{in_a_topos_with_an_nno} \linebreak \noindent\hyperlink{in_a_pretopos_with_}{In a $\Pi$-pretopos with $WCC$}\dotfill \pageref*{in_a_pretopos_with_} \linebreak \noindent\hyperlink{in_a_pretopos_with_an_nno_and_subset_collection}{In a $\Pi$-pretopos with an NNO and subset collection}\dotfill \pageref*{in_a_pretopos_with_an_nno_and_subset_collection} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{in_}{In $Set$}\dotfill \pageref*{in_} \linebreak \noindent\hyperlink{in_sheaves_on_a_topological_space}{In sheaves on a topological space}\dotfill \pageref*{in_sheaves_on_a_topological_space} \linebreak \noindent\hyperlink{InGrosToposOnTopologicalSpaces}{In sheaves on a gros site of topological spaces}\dotfill \pageref*{InGrosToposOnTopologicalSpaces} \linebreak \noindent\hyperlink{InASheafTopos}{In a general sheaf topos}\dotfill \pageref*{InASheafTopos} \linebreak \noindent\hyperlink{generalizations}{Generalizations}\dotfill \pageref*{generalizations} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Recall that it is possible to define an [[internalization]] of the set of [[natural numbers]], called a [[natural numbers object]] (NNO), in any [[cartesian monoidal category]] (a category with finite [[product|products]]). In particular, the notion makes sense in a [[topos]]. But a topos supports [[intuitionistic logic|intuitionistic]] [[higher-order logic]], so once we have an NNO, it is also possible to repeat the usual construction of the [[integer|integers]], the [[rational number|rationals]], and then finally the [[real number|real numbers]]; we thus obtain an internalization of $\mathbb{R}$ in any topos with an NNO. More generally, we can define a real numbers object (RNO) in any category with sufficient structure (somewhere between a cartesian monoidal category and a topos). Then we can prove that an RNO exists in any topos with an NNO (and in some other situations). \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $\mathcal{E}$ be a [[Heyting category]]. (This means, in particular, that we can interpret full [[first-order logic|first-order]] [[intuitionistic logic]] using the [[stack semantics]].) \begin{defn} \label{}\hypertarget{}{} A (located Dedekind) \textbf{real numbers object} in $\mathcal{E}$ is a [[ring object]] in $\mathcal{E}$ that satisfies (in the [[internal logic]]) the axioms of a [[Dedekind-complete]] [[linearly ordered]] [[Heyting field]]. \end{defn} In detail: A \emph{commutative ring object} in $\mathcal{E}$ is an object $R$ equipped with morphisms $0\colon \mathbf{1} \to R$, ${-}\colon R \to R$, ${+}\colon R \times R \to R$, $1\colon \mathbf{1} \to R$, and ${\cdot}\colon R \times R \to R$ (where $\mathbf{1}$ is the [[terminal object]] of $\mathcal{E}$ and $\times$ is the [[product]] operation in $\mathcal{E}$) that make certain diagrams commute. (These diagrams may be found at [[ring object]], in principle, although right now they're not there.) Given a commutative ring object $R$ in $\mathcal{E}$, we define a [[binary relation]] $\#$ on $R$ (that is a [[subobject]] of $R \times R$) as \begin{displaymath} \{ (x,y)\colon R \times R \;|\; \exists z\colon R.\, x \cdot z = y \cdot z + 1 \} , \end{displaymath} written in the [[internal language]] of $\mathcal{E}$. Then $R$ is a (Heyting) \emph{field object} if $\#$ is a tight [[apartness relation]]; that is if the following axioms (in the internal language) hold: \begin{itemize}% \item [[irreflexive relation|irreflexivity]]: $\forall x\colon R.\, \neg(x \# x)$, \item [[symmetric relation|symmetry]]: $\forall x\colon R.\, \forall y\colon R.\, (x \# y \implies y \# x)$ (which can actually be proved using $-$), \item [[comparison relation|comparison]]: $\forall x\colon R.\, \forall y\colon R.\, \forall z\colon R.\, (x \# z \implies (x \# y \vee y \# z))$, \item [[tight relation|tightness]]: $\forall x\colon R.\, \forall y\colon R.\, (\neg(x \# y) \implies x = y)$. \end{itemize} A (linearly) \emph{ordered field object} in $\mathcal{E}$ is a field object $R$ equipped with a binary relation $\lt$ such that the following axioms hold: \begin{itemize}% \item strong [[irreflexive relation|irreflexivity]]: $\forall x\colon R.\, \forall y\colon R.\, (x \lt y \implies x \# y)$, \item strong [[connected relation|connectedness]]: $\forall x\colon R.\, \forall y\colon R.\, (x \# y \implies (x \lt y \vee y \lt x))$, \item [[transitive relation|transitivity]]: $\forall x\colon R.\, \forall y\colon R.\, \forall z\colon R.\, ((x \lt y \wedge y \lt z) \implies x \lt z)$, \item respecting addition: $\forall x\colon R.\, \forall y\colon R.\, \forall z\colon R.\, (x \lt y \implies x + z \lt y + z)$, \item respecting multiplication: $\forall x\colon R.\, \forall y\colon R.\, \forall z\colon R.\, ((x \lt y \wedge 0 \lt z) \implies x \cdot z \lt y \cdot z)$. \end{itemize} Given an ordered field object $R$ in $\mathcal{E}$, any object $\Gamma$ in $\mathcal{E}$, and subobjects $L$ and $U$ of $\Gamma \times R$, we say that $(L,U)$ is a \emph{Dedekind cut} in $R$ (parametrised by $\Gamma$) if the following axioms hold: \begin{itemize}% \item lower bound: $\forall a\colon \Gamma.\, \exists x\colon R.\, (a,x) \in L$, \item upper bound: $\forall a\colon \Gamma.\, \exists x\colon R.\, (a,x) \in U$, \item downward roundedness: $\forall a\colon \Gamma.\, \forall x\colon R.\, \forall y\colon R.\, ((x \lt y \wedge (a,y) \in L) \implies (a,x) \in L)$, \item upward roundedness: $\forall a\colon \Gamma.\, \forall x\colon R.\, \forall y\colon R.\, (((a,x) \in U \wedge x \lt y) \implies (a,y) \in U)$, \item upward openness: $\forall a\colon \Gamma.\, \forall x\colon R.\, ((a,x) \in L \implies \exists b\colon \Gamma.\, \exists y\colon R.\, ((b,y) \in L \wedge x \lt y))$, \item downward openness: $\forall a\colon \Gamma.\, \forall x\colon R.\, ((a,x) \in U \implies \exists b\colon \Gamma.\, \exists y\colon R.\, ((b,y) \in U \wedge y \lt x))$, \item locatedness: $\forall a\colon \Gamma.\, \forall x\colon R.\, \forall y\colon R.\, (x \lt y \implies ((a,x) \in L \vee (a,y) \in U))$, \item separation: $\forall a\colon \Gamma.\, \forall x\colon R.\, \forall y\colon R.\, (((a,x) \in L \wedge (a,y) \in U) \implies x \lt y)$. \end{itemize} An ordered field object $R$ in $\mathcal{E}$ is \emph{Dedekind complete} if, given any object $\Gamma$ of $\mathcal{E}$ and any Dedekind cut $(L,U)$ in $R$ parametrised by $\Gamma$, there exists a morphism $x\colon \Gamma \to R$ such that \begin{displaymath} L = \{ (a,b)\colon \Gamma \times R \;|\; b \lt x(a) \} , \end{displaymath} \begin{displaymath} U = \{ (a,b)\colon \Gamma \times R \;|\; x(a) \lt b \} . \end{displaymath} Finally, a \emph{real numbers object} in $\mathcal{E}$ is a Dedekind-complete ordered field object. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} In the last requirement, of Dedekind completeness, we postulate (under certain conditions) the existence of a morphism $x\colon \Gamma \to R$ satisfying certain properties. \begin{thm} \label{}\hypertarget{}{} This morphism is in fact unique. \end{thm} Here is an explicit `external' proof: \begin{proof} Suppose that $x, x'\colon \Gamma \to R$ both satisfy the required properties, and consider $x \# x'$, which is a subobject of $\Gamma$. By the strong connectedness of $\lt$, $x \# x'$ is contained in (factors through) $x \lt x' \vee x' \lt x$, which is the [[union]] of $x \lt x'$ and $x' \lt x$. Now consider $x \lt x'$, and let $a$ be a [[generalised element]] of $\Gamma$. If $a$ belongs to (factors through) $x \lt x'$, or equivalently $(x(a), x'(a))$ belongs to $\lt$, it follows that $(a,x(a))$ belongs to $L$. Thus, $(x(a), x(a))$ also belongs to $\lt$, or equivalently $a$ belongs to $x \lt x$. By the strong irreflexivity of $\lt$, this is contained in $x \# x$; by the irreflexivity of $\#$, this is contained in $\bot$ (as a subobject of $\Gamma$). Since every $a$ that belongs to $x \lt x'$ belongs to $\bot$, $x \lt x'$ is contained in (and so equals as a subobject) $\bot$. Similarly (either by swapping $x$ with $x'$ or by using $U$ instead of $L$), $x' \lt x$ is also $\bot$. Therefore, $x \# x'$ is $\bot$. By the tightness of $\#$, $x = x'$. \end{proof} Here is an `internal' proof, to be interpreted in the [[stack semantics]] of $\mathcal{E}$: \begin{proof} Suppose that $x, x'\colon R$ both satisfy the required properties, and suppose that $x \# x'$. By the strong connectedness of $\lt$, $x \lt x'$ or $x' \lt x$. Now suppose that $x \lt x'$. It follows that $x$ belongs to $L$, so $x \lt x$. By the strong irreflexivity of $\lt$, $x \# x$; by the irreflexivity of $\#$, we have a contradiction. Similarly (either by swapping $x$ with $x'$ or by using $U$ instead of $L$), $x' \lt x$ is also false. Therefore, $x \# x'$ is false. By the tightness of $\#$, $x = x'$. \end{proof} In the definition of a Heyting field object, all of the axioms except the last are [[coherent logic|coherent]] and therefore make sense in any [[coherent category]]. \begin{thm} \label{}\hypertarget{}{} An object satisfying all but the last axiom of a field object is precisely a [[local ring]] object (so in particular an RNO is a local ring object). \end{thm} \begin{proof} \ldots{} \end{proof} It would be nice to say that a Heyting category with an RNO must have an NNO; after all, $\mathbb{N}$ is contained in $\mathbb{R}$. However, my only argument is impredicative; although I don't know a specific example, there could be a [[Π-pretopos]] with an RNO but no NNO. However, the argument works for a [[infinitary coherent category|geometric]] Heyting category or a [[topos]]. (In light of the constructions below, the existence of an RNO is therefore equivalent to the existence of an NNO in a topos.) \begin{thm} \label{}\hypertarget{}{} If $R$ is an RNO in an infinitary Heyting category or topos, then there is unique subobject $N$ of $R$ that is both a sub-[[rig]] object of $R$ and an NNO under the operations $0\colon \mathbf{1} \to N$ and $({-}) + 1\colon N \to N$. \end{thm} \begin{proof} \ldots{} \end{proof} We usually speak of \emph{[[the]]} RNO, if one exists. This is because any two RNOs in a Heyting category with an NNO are [[isomorphic]], in an essentially unique way. (I can't prove this without an NNO, although the previous theorem shows that we often have one.) \begin{thm} \label{}\hypertarget{}{} If $R$ and $R'$ are both RNOs in a Heyting category $\mathcal{E}$ with an NNO, then there is a unique isomorphism from $R$ to $R'$ that preserves the structures on them ($0$, $-$, $+$, $1$, $\cdot$, $\lt$). \end{thm} \begin{proof} \ldots{} \end{proof} \hypertarget{constructions}{}\subsection*{{Constructions}}\label{constructions} We can construct a real numbers object in the following cases (presumably among others): \begin{enumerate}% \item in a topos with an NNO; \item in a $\Pi$-[[Pi-pretopos|pretopos]] with an NNO and [[weak countable choice]]; \item in a $\Pi$-pretopos with an NNO and [[subset collection]]. \end{enumerate} (Actually, (1) is a special case of (3), but the usual construction in (1) is not available in (3). Thus, we still have three different constructions to consider.) \hypertarget{in_a_topos_with_an_nno}{}\subsubsection*{{In a topos with an NNO}}\label{in_a_topos_with_an_nno} Let $\mathcal{E}$ be an [[elementary topos]] with a natural numbers object $\mathbb{N}$. The \textbf{Dedekind real numbers object} of $\mathcal{E}$ is the object of all [[Dedekind cut|Dedekind cuts]]. To be more precise, we will need to make some auxiliary definitions. We first construct an integers object as follows. Let $a, b\colon E \to \mathbb{N} \times \mathbb{N}$ be the [[kernel pair]] of the addition map ${+}\colon \mathbb{N} \times \mathbb{N} \to \mathbb{N}$, and let $\pi_1, \pi_2\colon \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ be the [[product]] projections. We define $\mathbb{Z}$ to be the [[coequalizer]] of $(\pi_1 \circ a, \pi_2 \circ b), (\pi_2 \circ a, \pi_1 \circ b)\colon E \to \mathbb{N}$. A similar construction yields a rational numbers object $\mathbb{Q}$. We denote by $\mathcal{P}(A)$ the [[power object]] of $A$ in $\mathcal{E}$. A \textbf{Dedekind cut} is a [[generalized element]] $(L, U)$ of $\mathcal{P}(\mathbb{Q}) \times \mathcal{P}(\mathbb{Q})$, satisfying the following conditions, expressed in the [[Mitchell?Bénabou language]] of $\mathcal{E}$ and interpreted under [[Kripke-Joyal semantics|Kripke?Joyal semantics]]: \begin{enumerate}% \item Non-degenerate: \begin{displaymath} \exists q\colon \mathbb{Q}.\, q \in L ; \end{displaymath} \begin{displaymath} \exists r\colon \mathbb{Q}.\, r \in U . \end{displaymath} \item Inward-closed: \begin{displaymath} \forall q\colon \mathbb{Q}.\, \forall r\colon \mathbb{Q}.\, ((q \lt r \wedge r \in L) \implies q \in L) ; \end{displaymath} \begin{displaymath} \forall q\colon \mathbb{Q}.\, \forall r\colon \mathbb{Q}.\, ((r \lt q \wedge r \in U) \implies q \in U) . \end{displaymath} \item Outward-open: \begin{displaymath} \forall q\colon \mathbb{Q}.\, (q \in L \implies \exists r\colon \mathbb{Q}.\, (r \in L \wedge q \lt r)) \end{displaymath} \begin{displaymath} \forall q\colon \mathbb{Q}.\, (q \in U \implies \exists r\colon \mathbb{Q}.\, (r \in L \wedge r \lt q)) . \end{displaymath} \item Located: \begin{displaymath} \forall q\colon \mathbb{Q}.\, \forall r\colon \mathbb{Q}.\, (q \lt r \implies (q \in L \vee r \in U)) . \end{displaymath} \item Mutually exclusive: \begin{displaymath} \forall q\colon \mathbb{Q}.\, \neg(q \in L \wedge q \in U) . \end{displaymath} \end{enumerate} The relation $\lt$ on $\mathbb{Q}$ is the order relation constructed in the usual way. We define $\mathbb{R}$ to be the subobject of $\mathcal{P}(\mathbb{Q}) \times \mathcal{P}(\mathbb{Q})$ consisting of all Dedekind cuts as defined above. \hypertarget{in_a_pretopos_with_}{}\subsubsection*{{In a $\Pi$-pretopos with $WCC$}}\label{in_a_pretopos_with_} Summary: construct a [[Cauchy real numbers]] object and use $WCC$ ([[weak countable choice]]) to prove that it is an RNO. Note that any [[Boolean topos]] with an NNO satisfies $WCC$, so in all we have three different constructions available in that case. \hypertarget{in_a_pretopos_with_an_nno_and_subset_collection}{}\subsubsection*{{In a $\Pi$-pretopos with an NNO and subset collection}}\label{in_a_pretopos_with_an_nno_and_subset_collection} Summary: modify the construction of a [[Cauchy real numbers]] object to use [[multi-valued function|multi-valued]] [[Cauchy sequences]]. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{in_}{}\subsubsection*{{In $Set$}}\label{in_} The real numbers object in [[Set]] is the [[real line]], the usual set of (located Dedekind) [[real numbers]]. Note that this is a theorem of [[constructive mathematics]], as long as we assume that $Set$ is an elementary topos with an NNO (or more generally a [[Π-pretopos]] with [[natural numbers object|NNO]] and either WCC or subset collection). \hypertarget{in_sheaves_on_a_topological_space}{}\subsubsection*{{In sheaves on a topological space}}\label{in_sheaves_on_a_topological_space} Let $X$ be a [[topological space]], and $\mathrm{Sh}(X)$ its [[category of sheaves]]. It is well-known that $\mathrm{Sh}(X)$ is a [[Grothendieck topos]] (and so, \emph{a fortiori}, an elementary topos), and the [[constant sheaf]] [[functor]] $\Delta\colon \mathbf{Set} \to \mathrm{Sh}(X)$ preserves [[finite limits]] and has the [[global section]] functor $\Gamma\colon \mathrm{Sh}(X) \to \mathbf{Set}$ as a [[right adjoint]]. (Hence, $\Delta$ and $\Gamma$ are the components of a [[geometric morphism]] $\mathrm{Sh}(X) \to \mathbf{Set}$.) The following claims are essentially immediate: \begin{enumerate}% \item If $\mathbf{N}$ is the set of natural numbers, then $\Delta (\mathbf{N})$ must be an NNO in $\mathrm{Sh}(X)$, since $\Delta$ has a right adjoint. \item If $\mathbf{Z}$ is the set of integers, then $\Delta (\mathbf{Z})$ is an integers object in $\mathrm{Sh}(X)$ (as defined above), since $\Delta$ preserves finite limits and colimits. \item Similarly, if $\mathbf{Q}$ is the set of rational numbers, then $\Delta (\mathbf{Q})$ is a rational numbers object in $\mathrm{Sh}(X)$. \end{enumerate} Thus, for every topological space $X$, the topos $\mathrm{Sh}(X)$ has a Dedekind real numbers object $\mathbb{R}$. Na\"i{}vely one might expect $\mathbb{R}$ to be isomorphic to the constant sheaf $\Delta(\mathbf{R})$, where $\mathbf{R}$ is the classical set of real numbers, but this turns out not to be the case. Instead, we have a rather more remarkable result: \begin{theorem} \label{DedekindRealsInToposOverTopologicalSpace}\hypertarget{DedekindRealsInToposOverTopologicalSpace}{} A Dedekind real numbers object $\mathbb{R}$ in the topos $\mathrm{Sh}(X)$ is isomorphic to the sheaf of real-valued [[continuous functions]] on $X$. \end{theorem} This is shown in (\hyperlink{MM94}{MacLane-Moerdijk, Chapter VI, \S{}8, theorem 2}); see also below. \begin{remark} \label{}\hypertarget{}{} Theorem \ref{DedekindRealsInToposOverTopologicalSpace} allows us to define various further constructions on $X$ in internal terms in $\mathrm{Sh}(X)$; for example, a [[vector bundle]] over $X$ is an internal [[projective object|projective]] $\mathbb{R}$-[[module]]. \end{remark} \hypertarget{InGrosToposOnTopologicalSpaces}{}\subsubsection*{{In sheaves on a gros site of topological spaces}}\label{InGrosToposOnTopologicalSpaces} \begin{theorem} \label{}\hypertarget{}{} Let $\{\mathbb{R}\} \hookrightarrow S \hookrightarrow Top$ be a [[small category|small]] [[full subcategory]] of [[Top]] including the [[real line]]. If $S$ is closed under forming [[open subspaces]] and pullbacks of open subspaces and we equip it with the open-cover [[coverage]], then the Dedekind real number object internal to $Sh(S)$ is [[representable functor|represented]] by $\mathbb{R}^1$. \end{theorem} This is proven as (\hyperlink{MM94}{MacLane-Moerdijk, chapter VI \S{}9, theorem 2}) under the stronger assumption that $S$ is closed under open subspaces and finite limits, by showing that over each object in the site the argument reduces essentially to that of theorem \ref{DedekindRealsInToposOverTopologicalSpace} for that object. However, the finite limits are not necessary; see also below. The more general version includes the cases \begin{itemize}% \item $S =$ $\{$ [[locally contractible topological spaces]] $\}$ \item $S =$ $\{$ [[topological manifolds]] $\}$ \end{itemize} (for which $Sh(S)$ is [[cohesive topos]] and $Sh_\infty(S)$ is an [[cohesive (∞,1)-topos]]). \hypertarget{InASheafTopos}{}\subsubsection*{{In a general sheaf topos}}\label{InASheafTopos} We can generalize the above theorem as follows. Let $S$ be any [[site]], and for any object $X\in S$ let $L(X)$ denote the [[locale]] whose [[frame]] of opens is the frame of [[subobjects]] of the sheafified representable $y X \in Sh(S)$. We have an induced functor $L:S\to Loc$. We can also regard the ordinary real numbers $\mathbb{R}$ as a locale. \begin{theorem} \label{}\hypertarget{}{} The Dedekind real number object in $Sh(S)$ is the functor $Loc(L-,\mathbb{R})$. \end{theorem} \begin{proof} The sheaf topos $Sh(\mathbb{R})$ is the classifying topos of the geometric theory of a real number, in the sense that for any Grothendieck topos $E$, geometric morphisms $E \to Sh(\mathbb{R})$ are equivalent to global points of the real numbers object $\mathbb{R}_E$ in $E$. Since pullback functors are logical, they preserve the real numbers object; thus for any $X\in E$, maps $X\to \mathbb{R}_E$ are equivalent to geometric morphisms $E/X \to Sh(\mathbb{R})$. But $Sh(\mathbb{R})$ is localic, so such geometric morphisms factor through the localic reflection of $E/X$, and therefore are equivalent to continuous $\mathbb{R}$-valued functions defined on the ``little locale of $X$'', i.e. the locale associated to the frame of subobjects of $X$ in $E$. Therefore, if $E = Sh(S)$ for some site $S$, then $\mathbb{R}_E$ is the sheaf on $S$ where $\mathbb{R}_E(X)=$ the set of continuous $\mathbb{R}$-valued functions on the little locale of $y X \in E$, which is what we have called $L X$. \end{proof} To deduce the previous theorem from this one, it suffices to observe that if $S\subset Top$ is closed under open subspaces and their pullbacks and equipped with the open-cover coverage, then every subobject of $y X\in Sh(S)$, for any $X\in S$, is uniquely representable by an open subset of $X$. There is some dispute about this, see \href{http://nforum.mathforge.org/discussion/6289/when-is-the-internal-real-line-the-external-real-line/?Focus=50275#Comment_50275}{here}. Resolution seems to be \href{http://mathoverflow.net/a/186165/381}{here} \hypertarget{generalizations}{}\subsection*{{Generalizations}}\label{generalizations} It is also possible to define the notion of a [[Cauchy real number]] object and construct one in any $\Pi$-pretopos with an NNO, but as the internal logic in general lacks [[weak countable choice]], these are usually inequivalent. (There is also potentially a difference between the \emph{classical} Cauchy RNO and the \emph{modulated} Cauchy RNO; see definitions at [[Cauchy real number]], to be interpreted in the [[stack semantics]].) \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[real number]] \item [[Cauchy real number]] \item [[one-sided real numbers]] \item [[natural number]] \item [[natural numbers object]] \item [[smooth structure on a topos]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Discussion in [[topos theory]] is in \begin{itemize}% \item [[Peter Johnstone]], section D4.7 of \emph{[[Sketches of an Elephant]]} \item [[Peter Johnstone]], \emph{Topos Theory} , Academic Press New York 1977 (Dover reprint New York 2014). (section 6.6. pp.210-23) \item [[Saunders Mac Lane]], [[Ieke Moerdijk]], section VI.8 of \emph{[[Sheaves in Geometry and Logic]]} . \item [[Eduardo Dubuc]], \emph{Logical Opens and Real Numbers in Topoi} , JPAA \textbf{43} (1986) pp.129-143. \item [[Michael Fourman]], \emph{Comparaison des R\'e{}els d'un Topos - Structures Lisses sur un Topos El\'e{}mentaire} , Cah. Top. G\'e{}om. Diff. Cat. \textbf{16} (1975) pp.233-239. ( \emph{Colloque Amiens 1975 proceedings} ) (p. 18-24 in \href{http://www.numdam.org/item?id=CTGDC_1975__16_3_217_0}{NUMDAM})) \item [[Michael Fourman]], \emph{T$_1$ Spaces over Topological Sites} , JPAA \textbf{27} (1983) pp.223-224. \item [[Michael Fourman]], [[Martin Hyland]], \emph{Sheaf Models for Analysis} , pp.280-301 in Fourman, Mulvey, Scott (eds.), \emph{Applications of Sheaves} , LNM \textbf{753} Springer Heidelberg 1979. (\href{https://www.dpmms.cam.ac.uk/~martin/Research/Oldpapers/analysis79.pdf}{draft}, 6.64 MB) \item [[André Joyal]], [[Gonzalo E. Reyes]], \emph{Separably Real Closed Local Rings} , JPAA \textbf{43} (1986) pp.271--279. \item [[Ieke Moerdijk]], [[Gonzalo E. Reyes]], \emph{Smooth Spaces versus Continuous Spaces in Models of Synthetic Differential Geometry} , JPAA \textbf{32} (1984) pp.143-176. \item J. Z. Reichman, \emph{Semicontinuous Real Numbers in a Topos} , JPAA \textbf{28} (1983) pp.81-91. \item L. Stout, \emph{Unpleasant Properties of the Reals in a Topos} , Cah. Top. G\'e{}om. Diff. Cat. \textbf{16} (1975) pp.320-322. (\href{http://archive.numdam.org/ARCHIVE/CTGDC/CTGDC_1975__16_3/CTGDC_1975__16_3_217_0/CTGDC_1975__16_3_217_0.pdf}{Colloque Amiens 1975 proceedings},6.81 MB) \item L. N. Stout, \emph{Topological Properties of the Real Numbers Object in a Topos} , Cah. Top. G\'e{}om. Diff. Cat. \textbf{17} no.3 (1976) pp.295-326. (\href{http://archive.numdam.org/ARCHIVE/CTGDC/CTGDC_1976__17_3/CTGDC_1976__17_3_295_0/CTGDC_1976__17_3_295_0.pdf}{pdf}) \end{itemize} Discussion in [[homotopy type theory]] is in \begin{itemize}% \item [[Univalent Foundations Project]], section 11 of \emph{[[Homotopy Type Theory -- Univalent Foundations of Mathematics]]} \end{itemize} [[!redirects real numbers object]] [[!redirects real numbers objects]] [[!redirects real number object]] [[!redirects real number objects]] [[!redirects real-numbers object]] [[!redirects real-numbers objects]] [[!redirects real-number object]] [[!redirects real-number objects]] [[!redirects real numbers object in a topos]] [[!redirects real numbers objects in a topos]] [[!redirects real numbers objects in toposes]] [[!redirects real numbers objects in topoi]] [[!redirects real number object in a topos]] [[!redirects real number objects in a topos]] [[!redirects real number objects in toposes]] [[!redirects real number objects in topoi]] [[!redirects real-numbers object in a topos]] [[!redirects real-numbers objects in a topos]] [[!redirects real-numbers objects in toposes]] [[!redirects real-numbers objects in topoi]] [[!redirects real-number object in a topos]] [[!redirects real-number objects in a topos]] [[!redirects real-number objects in toposes]] [[!redirects real-number objects in topoi]] [[!redirects Dedekind real numbers object]] [[!redirects Dedekind real numbers objects]] [[!redirects Dedekind real number object]] [[!redirects Dedekind real number objects]] [[!redirects Dedekind real-numbers object]] [[!redirects Dedekind real-numbers objects]] [[!redirects Dedekind real-number object]] [[!redirects Dedekind real-number objects]] [[!redirects Cauchy real numbers object]] [[!redirects Cauchy real numbers objects]] [[!redirects Cauchy real number object]] [[!redirects Cauchy real number objects]] [[!redirects Cauchy real-numbers object]] [[!redirects Cauchy real-numbers objects]] [[!redirects Cauchy real-number object]] [[!redirects Cauchy real-number objects]] \end{document}