\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{realizability topos} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{Topos Theory}}\label{topos_theory} [[!include topos theory - contents]] \hypertarget{constructivism_realizability_computability}{}\paragraph*{{Constructivism, Realizability, Computability}}\label{constructivism_realizability_computability} [[!include constructivism - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{constructions}{Constructions}\dotfill \pageref*{constructions} \linebreak \noindent\hyperlink{via_tripos_theory}{Via tripos theory}\dotfill \pageref*{via_tripos_theory} \linebreak \noindent\hyperlink{via_assemblies}{Via assemblies}\dotfill \pageref*{via_assemblies} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{Characterization}{Axiomatic characterization}\dotfill \pageref*{Characterization} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A realizability topos is a [[topos]] which embodies the [[realizability interpretation]] of [[intuitionistic mathematics|intuitionistic]] [[number theory]] (due to Kleene) as part of its [[internal logic]]. Realizability toposes form an important class of [[elementary toposes]] that are not [[Grothendieck toposes]], and don't even have a [[geometric morphism]] to [[Set]]. The input datum for forming a realizability topos is a [[partial combinatory algebra]], or PCA. \begin{itemize}% \item When the PCA is [[Kleene's first algebra]] $\mathcal{K}_1$, the resulting topos is called the [[effective topos]] $RT(\mathcal{K}_1)$. \item When the PCA is [[Kleene's second algebra]] $\mathcal{K}_2$ then $RT(\mathcal{K}_2)$ is the [[function realizability topos]]. \end{itemize} \hypertarget{constructions}{}\subsection*{{Constructions}}\label{constructions} There are a number of approaches toward constructing realizability toposes. One is through [[tripos]] theory, and another is through assemblies (actually the latter is a family of related approaches). Let $A$ be a [[partial combinatory algebra|PCA]] --- in [[Set]], for simplicity, but similar constructions usually work over other base toposes. \hypertarget{via_tripos_theory}{}\subsubsection*{{Via tripos theory}}\label{via_tripos_theory} There is a [[tripos]] whose base category is $Set$ and for which the preorder $P_A(X)$ of $X$-indexed predicates is the set $P(A)^X$ of functions from $X$ to the [[powerset]] $P(A)$ of $A$. The order relation sets $\phi \le \psi$ if there exists $a\in A$ such that $b\in \phi(x)$ implies $a\cdot b \in \psi(x)$ for all $x$; note that $a$ must be chosen uniformly across all $x\in X$. Applying the tripos-to-topos construction to this tripos produces the realizability topos over $A$. See [[tripos]] for details. \hypertarget{via_assemblies}{}\subsubsection*{{Via assemblies}}\label{via_assemblies} \begin{defn} \label{}\hypertarget{}{} An \textbf{assembly} $X$ consists of a set ${|X|}$ and a function $[-]_X \colon {|X|} \to P(A)$, where $P(A)$ denotes the [[powerset]] of $A$. An assembly is \textbf{partitioned} if $[-]_X$ takes values in singletons, i.e. is a function ${|X|} \to A$. A \textbf{morphism} $X \to Y$ between assemblies is a function $f \colon {|X|} \to {|Y|}$ for which there exists $a \in A$ such that for all $x\in X$ and $b\in [x]_X$, $a\cdot b$ is defined and belongs to $[f(x)]_Y$. \end{defn} The categories of assemblies and partitioned assemblies are denoted $Ass_A$ and $PAss_A$ respectively. \begin{prop} \label{}\hypertarget{}{} $Ass_A$ and $PAss_A$ are finitary [[extensive category|lextensive]]. Moreover, $Ass_A$ is [[regular category|regular]] and [[locally cartesian closed category|locally cartesian closed]]. \end{prop} \begin{defn} \label{}\hypertarget{}{} $Ass_A$ is the [[reg/lex completion]] of $PAss_A$. Therefore, [[ex/lex completion]] of $PAss_A$ coincides with the [[ex/reg completion]] of $Ass_A$. This category is a [[topos]], called the \textbf{realizability topos} of $A$. \end{defn} \begin{remark} \label{pax}\hypertarget{pax}{} A general result about the ex/lex completion $C_{ex/lex}$ of a left exact category $C$ is that it has enough regular [[projective object|projectives]], meaning objects $P$ such that $\hom(P, -) \colon C_{ex/lex} \to Set$ preserves regular epis. In fact, the regular projective objects coincide with the objects of $C$ (as a subcategory of $C_{ex/lex}$). Of course, when $C_{ex/lex}$ is a topos, where every epi is regular, this means $C_{ex/lex}$ has enough projectives, or satisfies (external) [[COSHEP]]. It also satisfies internal [[COSHEP]], since binary products of projectives, i.e., products of objects of $C$, are again objects of $C$ (see \href{/nlab/show/internally+projective+object#enough}{this result}). \end{remark} \begin{remark} \label{ac}\hypertarget{ac}{} The fact that a realizability topos is an ex/lex completion depends on the [[axiom of choice]] for [[Set]], since it requires the partitioned assemblies to be projective objects therein. In the absence of the axiom of choice, the projective objects in a realizability topos are the (isomorphs of) partitioned assemblies whose underlying set is [[projective object|projective]] in [[Set]]. Thus, if [[COSHEP]] holds in [[Set]], then a realizability topos is the ex/wlex completion of the category of such ``projective partitioned assemblies'' (wlex because this category may not have finite limits, only weak finite limits). Without some choice principle, the realizability topos may not be an ex/wlex completion at all; but it is still an ex/reg completion of $Ass_A$. \end{remark} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{Characterization}{}\subsubsection*{{Axiomatic characterization}}\label{Characterization} The following is a statement characterizing realizability toposes which is analogous to the [[Giraud axioms]] characterizing [[Grothendieck toposes]]. \begin{theorem} \label{}\hypertarget{}{} A [[locally small category]] $\mathcal{E}$ is ([[equivalence of categories|equivalent]] to) a realizability topos precisely if \begin{enumerate}% \item $\mathcal{E}$ is [[exact category|exact]] and [[locally cartesian closed category|locally cartesian closed]]; \item $\mathcal{E}$ has [[enough projectives]] and the [[full subcategory]] $Proj(\mathcal{E}) \hookrightarrow \mathcal{E}$ has all [[finite limits]]; \item the [[global section]] [[functor]] $\Gamma \coloneqq \mathcal{E}(\ast,-) \colon \mathcal{E}\longrightarrow$ [[Set]] \begin{enumerate}% \item has a [[right adjoint]] $\nabla \colon Set \hookrightarrow \mathcal{E}$ (which is necessarily a [[reflective subcategory|reflective inclusion]] making $\nabla \Gamma$ a finite-limit preserving [[idempotent monad]]/[[closure operator]]); \item $\nabla$ factors through $Proj(\mathcal{E})$; \end{enumerate} \item there exists an object $D \in Proj(\mathcal{E})$ such that \begin{enumerate}% \item $D$ is $\nabla\Gamma$-[[separated presheaf|separated]] (in that its $(\Gamma \dashv \nabla)$-[[unit of a monad|unit]] is a [[monomorphism]]); \item all $\nabla \Gamma$-\href{closure+operator#InducedClosureOnSlices}{closed} [[regular epimorphisms]] have the [[left lifting property]] against $D\to \ast$; \item for every [[projective object]] $P$ there is a $\nabla \Gamma$-\href{closure+operator#InducedClosureOnSlices}{closed morphism} $P \to D$. \end{enumerate} \end{enumerate} \end{theorem} This is due to (\hyperlink{Frey14}{Frey 14}) \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[realizability]] \item [[realizability model]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Stijn Vermeeren]], \emph{Realizability Toposes}, 2009 (\href{http://stijnvermeeren.be/download/mathematics/essay.pdf}{pdf}) \item Mat\'i{}as Menni, Exact completions and toposes. Ph.D. Thesis, University of Edinburgh (2000). (\href{http://www.lfcs.inf.ed.ac.uk/reports/00/ECS-LFCS-00-424/}{web}) \end{itemize} A characterization of realizability toposes analogous to the [[Giraud axioms]] for [[Grothendieck toposes]] is given in \begin{itemize}% \item [[Jonas Frey]], \emph{Characterizing partitioned assemblies and realizability toposes} (\href{http://arxiv.org/abs/1404.6997}{arXiv:1404.6997}) \end{itemize} [[!redirects realizability topos]] [[!redirects realizability topoi]] [[!redirects realizability toposes]] [[!redirects realisability topos]] [[!redirects realisability topoi]] [[!redirects realisability toposes]] [[!redirects Realizability topos]] [[!redirects Realizability topoi]] [[!redirects Realizability toposes]] [[!redirects Realisability topos]] [[!redirects Realisability topoi]] [[!redirects Realisability toposes]] [[!redirects assembly]] [[!redirects assemblies]] \end{document}