\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{recollement} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{modalities_closure_and_reflection}{}\paragraph*{{Modalities, Closure and Reflection}}\label{modalities_closure_and_reflection} [[!include modalities - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \textbf{recollement} situation is a [[diagram]] of six [[additive functors]] \begin{displaymath} \mathcal{A}' \stackrel{\overset{i^*}{\longleftarrow}}{\stackrel{\overset{i_*}{\longrightarrow}}{\underset{i^!}{\longleftarrow}}} \mathcal{A}\stackrel{\overset{j_!}{\longleftarrow}}{\stackrel{\overset{j^*}{\longrightarrow}}{\underset{j_*}{\longleftarrow}}}\mathcal{A}'' \end{displaymath} among three [[abelian category|abelian]] or [[triangulated categories]] satisfying a strong list of [[exact functor|exactness]] and [[adjoint functor|adjointness]] axioms. The paradigmatic situation is about the categories of [[abelian sheaves]] $\mathcal{A}' = Sh(C)$, $\mathcal{A} = Sh(X)$, $\mathcal{A}'' = Sh(U)$, where $U\subset X$ is an [[open subset]] of a [[topological space]], $C = X\backslash U$ the [[complement]], and the functors among the [[category of sheaves|sheaf categories]] are induced by the [[open embedding]] $j \colon U\hookrightarrow X$ and [[closed embedding]] $i \colon C\hookrightarrow X$. As suggested by this example, recollement may in fact be regarded as the additive or triangulated version of [[Artin gluing]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A modern treatment for the recollement of abelian categories is in (\hyperlink{FranjouPirashvili04}{Franjou-Pirashvili 04}), where the following axioms are listed: (i) $j_!\dashv j^*\dashv j_*$ (ii) the [[unit of an adjunction|unit]] $Id_{\mathcal{A}''}\to j^* j_!$ and the [[counit of an adjunction|counit]] $j^* j_*\to Id_{\mathcal{A}''}$ are [[isomorphism|iso]] (\href{adjoint%20functor#FullyFaithfulAndInvertibleAdjoints}{hence} $j_\ast$ and $j_!$ are [[fully faithful functor|fully faithful]]) (iii) $i^*\dashv i_*\dashv i^!$ (iv) the unit $Id_{\mathcal{A}'}\to i^! i_*$ and the counit $i^* i_*\to Id_{\mathcal{A}'}$ are iso (v) the functor $i_*:\mathcal{A}'\to Ker(j^*)$ is an equivalence of categories. In fact (i) and (ii) for $j^*:\mathcal{A}\to\mathcal{A}''$ enable one to define $\mathcal{A}'$ as the full subcategory of $\mathcal{A}$ whose objects $a$ satisfy $j^* a = 0$ such that one satisfies the recollement situation. A standard treatment for the sequence of triangulated functors \begin{displaymath} \mathcal{D}' \overset{i_*}{\to} \mathcal{D}\overset{j^*}{\to}\mathcal{D}'' \end{displaymath} is in (\hyperlink{BeilinsonBernsteinDeligne82}{Beilinson-Bernstein-Deligne 82}) where in 1.4.3 the following axioms are listed (a) $i_* = i_!$ admits a triangulated left adjoint $i^*$ and triangulated right adjoint $i^!$ (b) $j^* = j^!$ admits a triangulated left adjoint $j_*$ and triangulated right adjoint $j_!$ (c) $j^* i_* = 0$ (hence by adjointness, also $i^*j_! = 0$ and $i^! j_*=0$) (d) given $d\in Ob{\mathcal{D}}$, there exist (necessarily unique) distinguished triangles \begin{displaymath} i_! i^! d \to d\to j_* j^* d\to (i_! i^! d) [1] \end{displaymath} \begin{displaymath} j_! j^! d \to d\to i_* i^* d\to (j_! j^! d) [1] \end{displaymath} (e) $i_*, j_*, j_!$ are full embeddings. Again in good situations, less data is needed to provide the recollement. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item The [[forgetful functor]] from [[global equivariant stable homotopy theory]] to plain [[stable homotopy theory]] exhibits a recollement, \end{itemize} See at \emph{\href{global+equivariant+stable+homotopy+theory#RelationToPlainStableHomotopyTheory}{global equivariant stable homotopy theory -- Relation to plain stable homotopy theory}}. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[adjoint modality]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item V. Franjou, [[T. Pirashvili]], \emph{Comparison of abelian categories recollements}, Doc. Math. 9 (2004), 41--56, \href{http://www.ams.org/mathscinet-getitem?mr=2054979}{MR2005c:18008}, \href{http://www.math.uni-bielefeld.de/documenta/vol-09/03.pdf}{pdf} \item A.A. Beilinson, J. Bernstein, [[Pierre Deligne]], \emph{Faisceaux pervers. Analysis and topology on singular spaces}, I (Luminy, 1981), 5--171, Aste'risque 100, Soc. Math. France, Paris 1982. \end{itemize} In references \begin{itemize}% \item E. Cline, B. Parshall, L. Scott, \emph{Finite dimensional algebras and highest weight categories}, J. Reine Angew. Math, 1988, 391: 85---99, \href{http://www.ams.org/mathscinet-getitem?mr=961165}{MR90d:18005}, \href{http://resolver.sub.uni-goettingen.de/purl?GDZPPN002205971}{goettingen} \item E. Cline, B. Parshall, L. Scott, \emph{Algebraic stratification in representative categories}, J. of Algebra 117, 1988, 504---521. \end{itemize} one studies the following kind of sources of recollement situations for triangulated categories: $k$ is a commutative [[field]], $A$ a finite dimensional unital associative $k$-algebra, $e$ an idempotent, and $D^b(A)$ the bounded derived category of right $A$-modules. Suppose $eA(1-e) = 0$ and the global dimension of $A$ is finite. Then there is a recollement of triangulated categories involving $D^b(eAe)$, $D^b(A)$ and $D^b((1-e)A(1-e))$. \begin{itemize}% \item S. Koenig, \emph{Tilting complexes, perpendicular categories and recollements of derived module categories of rings.}, \href{http://www.ams.org/mathscinet-getitem?mr=1124785}{MR92k:18009}, \item Qinghua Chen,Yanan Lin, \emph{Recollements of extension algebras}, Science in China 46, 4, 2003 \href{http://www.springerlink.com/content/h185372128726855/fulltext.pdf}{pdf} \end{itemize} Another source of examples is due MacPherson and Vilonen \begin{itemize}% \item Kari Vilonen, \emph{Perverse sheaves and finite dimensional algebras}, Trans. A.M.S. 341 (1994), 665--676, \href{http://www.ams.org/mathscinet-getitem?mr=1135104}{MR94d:16012}, \href{http://dx.doi.org/10.2307/2154577}{doi} \item Michael Artin, Grothendieck Topologies. Harvard University, 1962. \item Yuri Berest, Oleg Chalykh, Farkhod Eshmatov, \emph{Recollement of deformed preprojective algebras and the Calogero-Moser correspondence}, Mosc. Math. J. 8 (2008), no. 1, 21--37, 183, \href{http://arxiv.org/abs/0706.3006}{arxiv/0706.3006}, \href{http://www.ams.org/mathscinet-getitem?mr=2422265}{MR2009h:16030} \item Roy Joshua, \href{http://www.math.osu.edu/~joshua.1/GV.pdf}{pdf} \item Yang Han, \emph{Recollements and Hochschild theory}, \href{http://arxiv.org/abs/1101.5697}{arxiv/1101.5697} \end{itemize} For treatment in the setting of $\infty$-categories: \begin{itemize}% \item [[Jacob Lurie]], section A.8 of \emph{[[Higher Algebra]]}, \item [[Clark Barwick]], [[Saul Glasman]], \emph{A note on stable recollements} (\href{https://arxiv.org/abs/1607.02064}{arXiv:1607.02064}) \end{itemize} \end{document}