\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{reconstruction theorem} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{tannakian_reconstruction_theorems}{Tannakian reconstruction theorems}\dotfill \pageref*{tannakian_reconstruction_theorems} \linebreak \noindent\hyperlink{reconstruction_theorems_for_schemes}{Reconstruction theorems for schemes}\dotfill \pageref*{reconstruction_theorems_for_schemes} \linebreak \noindent\hyperlink{lawveres_reconstruction_theorem}{Lawvere's reconstruction theorem}\dotfill \pageref*{lawveres_reconstruction_theorem} \linebreak \noindent\hyperlink{gabrielulmer_duality}{Gabriel-Ulmer duality}\dotfill \pageref*{gabrielulmer_duality} \linebreak \noindent\hyperlink{heuristics}{Heuristics}\dotfill \pageref*{heuristics} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Sometimes for categories having some fixed property and/or structure, one can produce a recipe which gives (up to suitable equivalence) all the examples (and nothing else). There are several typical classes of reconstruction theorems (which are all to some extent related). \hypertarget{tannakian_reconstruction_theorems}{}\subsection*{{Tannakian reconstruction theorems}}\label{tannakian_reconstruction_theorems} These theorems reconstruct an algebraic symmetry object ([[group]], [[groupoid]], [[gerbe]], [[Hopf algebra]], Hopf algebroid) from the [[monoidal category]] of [[representation]]s of that object (typically rigid and [[symmetric monoidal category|symmetric]] or [[braided monoidal category|braided]]). The correspondence between the symmetry object and the corresponding [[category of representations]] is called \textbf{[[Tannaka duality]]}. Examples include classical Tannaka theorem and Krein theorem, [[Doplicher-Roberts reconstruction theorem]] in physics, [[Deligne's theorem on tensor categories]], Woronowicz's Tannaka duality for compact matrix pseudogroups, Saavedra-Rivano and Deligne reconstruction theorems for neutral and mixed Tannakian categories, Ulrich's reconstruction theorem, reconstruction theorems of Majid, Nori Tannakian theorem, Grothendieck's version of Galois group in algebraic geometry and so on. The notion of the [[fiber functor]] (due to Grothendieck) is central to these considerations. \hypertarget{reconstruction_theorems_for_schemes}{}\subsection*{{Reconstruction theorems for schemes}}\label{reconstruction_theorems_for_schemes} These theorems for schemes (or varieties only) reconstruct a [[scheme]] (variety) out of the category of quasicoherent or only coherent sheaves (or a [[derived category]] version of them). In that class one can find Gabriel--Rosenberg theorem, [[Bondal-Orlov reconstruction theorem]], reconstruction theorems of \href{http://www.math.ucla.edu/~balmer}{P. Balmer} and of \href{http://www-maths.swan.ac.uk/staff/gg}{G. Garkusha} and so on. There is also a class of reconstructions where for some derived categories a realization as derived categories of representation of quivers can be reconstructed. There is a large class of \textbf{abelian reconstruction theorems}, for example the Gabriel--Popescu theorem. In \emph{topos theory} the \textbf{Giraud theorem} is also a reconstruction theorem (of a site out of a topos, though a nonuniqueness of the resulting site is involved, not affecting cohomology, hence, according to Grothendieck, nonessential). \hypertarget{lawveres_reconstruction_theorem}{}\subsection*{{Lawvere's reconstruction theorem}}\label{lawveres_reconstruction_theorem} \textbf{[[Lawvere's reconstruction theorem]]} reconstructs a Lawvere theory $C$ from its category of finitely generated free models. \hypertarget{gabrielulmer_duality}{}\subsection*{{Gabriel-Ulmer duality}}\label{gabrielulmer_duality} [[Gabriel-Ulmer duality]] is an equivalence of 2-categories LFP of locally finitely presentable categories and Lex of finitely complete categories. It is related to syntax-semantics adjunction and to Tannaka type reconstruction for coalgebra-like objects, with which has a common generalization (enriched Tannaka duality of Day). \hypertarget{heuristics}{}\subsection*{{Heuristics}}\label{heuristics} Typically in the proofs of most reconstruction theorems an implicit use of the Yoneda lemma is involved. Various embedding theorems of classes of categories (as well as theorems on realization as quotient categories) are closely related, e.g. Barr embedding theorem and Freyd--Mitchell embedding theorem. \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[André Joyal]], [[Ross Street]], \href{http://www.maths.mq.edu.au/~street/CT90Como.pdf}{An introduction to Tannaka duality and quantum groups}, in Part II of \emph{Category Theory, Proceedings, Como 1990}, eds. A. Carboni, M. C. Pedicchio and G. Rosolini, Lec. Notes in Mathematics \textbf{1488}, Springer, Berlin, 1991, pp. 411--492 \href{http://dx.doi.org/10.1007/BFb0084207}{doi:10.1007/BFb0084207}. \item P. Deligne, [[Catégories Tannakiennes]], [[Grothendieck Festschrift]], vol. II, Birkh\"a{}user Progress in Math. 87 (1990) pp.111--195. \item Alexander L. Rosenberg, \emph{The existence of fiber functors}, in `The Gelfand Mathematical Seminars 1996--1999', pp. 145--154. Birkh\"a{}user, Boston, MA, 2000. \item A. L. Rosenberg, [[Reconstruction of groups]], Selecta Math. N.S. 9:1 (2003) \href{http://dx.doi.org/10.1007/s00029-003-0322-x}{doi} \item N. Saavedra Rivano, \emph{Cat\'e{}gories Tannakiennes}, Springer LNM 265, 1972 \item Bodo Pareigis, \href{http://www.mathematik.uni-muenchen.de/~pareigis/pa_schft.html}{Quantum groups and noncommutative geometry}, WS 1999, chapter 3, online notes. \item S. Majid, \emph{Foundations of quantum group theory}, chapter 9, Camb. Univ. Press 1995, 2002. \item S. Majid, \emph{Tannaka--Krein theorem for quasiHopf algebras and other results}, Contemp. Math. 134 (1992) 219--232. \item A. L. Rosenberg, \emph{Reconstruction of groups}, Selecta Math. N.S. \textbf{9}:1 (2003)\href{http://dx.doi.org/10.1007/s00029-003-0322-x}{doi:10.1007/s00029-003-0322-x} (nlab remark: this paper is on a generalization of Tannaka--Krein and not of the Gabriel--Rosenberg kind of reconstruction) \item A. Rosenberg, \emph{The spectrum of abelian categories and reconstructions of schemes}, in Rings, Hopf Algebras, and Brauer groups, Lectures Notes in Pure and Appl. Math. \textbf{197}, Marcel Dekker, New York, 257--274, 1998; MR99d:18011; and Max Planck Bonn preprint \emph{Reconstruction of Schemes}, \href{http://www.mpim-bonn.mpg.de/preprints/send?bid=3948}{MPIM1996-108} (1996). \item [[A. L. Rosenberg]], \emph{Spectra of noncommutative spaces}, MPIM2003-110 \href{http://www.mpim-bonn.mpg.de/preblob/1946}{ps} \href{http://www.mpim-bonn.mpg.de/preblob/1945}{dvi}, \emph{Underlying spaces of noncommutative schemes}, MPIM2003-111, \href{http://www.mpim-bonn.mpg.de/preblob/1947}{dvi}, \href{http://www.mpim-bonn.mpg.de/preblob/1948}{ps} \item [[P. Gabriel]], [[Des catégories abéliennes]], Bulletin de la Soci\'e{}t\'e{} Math\'e{}matique de France \textbf{90} (1962), 323--448, \href{http://www.numdam.org/item?id=BSMF_1962__90__323_0}{numdam} \item A. I. Bondal, [[D. O. Orlov]], \emph{Reconstruction of a variety from the derived category and groups of autoequivalences}, Compos. Math. 125 (2001), 327--344 \href{http://dx.doi.org/10.1023/A:1002470302976}{doi:10.1023/A:1002470302976} \item [[K. Szlachányi]], \emph{Fiber functors, monoidal sites and Tannaka duality for bialgebroids} \href{http://arxiv.org/abs/0907.1578}{arxiv:0907.1578} \item Ph\`u{}ng H\^o{} Hai, \emph{Tannaka--Krein duality for Hopf algebroids}, \href{http://arxiv.org/abs/math/0206113}{arxiv:math.QA/0206113} \item H\'e{}l\`e{}ne Esnault, Ph\`u{}ng H\^o{} Hai, \emph{Gau\ss{}--Manin connection and Tannaka duality}, \href{http://arxiv.org/abs/math/0509111}{math.AG/0509111} \item H. Pfeiffer, \emph{Tannaka--Krein reconstruction and a characterization of modular tensor categories}, \href{http://arxiv.org/abs/0711.1402}{arxiv:math.QA/0711.1402} \item [[S. L. Woronowicz]], \emph{Tannaka--Kren duality for compact matrix pseudogroups. Twisted $SU(N)$ groups}, Invent. Math. \textbf{93} (1988), no. 1, 35--76 \item [[Michael Müger]], \emph{Abstract duality for symmetric tensor $*$-categories} (App. to Hans Halvorson: `Algebraic Quantum Field Theory'.) In: J. Butterfield and J. Earman (eds.): ``Handbook of the Philosophy of Physics'', p. 865--922. North Holland, 2007; \href{http://arxiv.org/abs/math-ph/0602036}{arxiv:math-ph/0602036}; cf. The String Coffee Table, \href{http://golem.ph.utexas.edu/string/archives/000711.html}{M\"u{}ger on Doplicher--Roberts} \item [[S. Doplicher]], J. E. Roberts, \emph{A new duality theory for compact groups}, Inventiones Math., 98(1):157--218, 1989. \item [[P. Balmer]], \emph{The spectrum of prime ideals in tensor triangulated categories}, J. Reine Angew. Math. \textbf{588} (2005), pp. 149--168 \href{http://www.math.ucla.edu/~balmer/research/Pubfile/Spectrum.dvi}{dvi} \href{http://www.math.ucla.edu/~balmer/research/Pubfile/Spectrum.pdf}{pdf} \href{http://www.math.ucla.edu/~balmer/research/Pubfile/Spectrum.ps}{ps}. \item \href{http://www.maths.man.ac.uk/~mprest}{M. Prest}, [[G. Garkusha]], \emph{Reconstructing projective schemes from Serre subcategories}, J. Algebra \textbf{319} (3) (2008), 1132--1153 (\href{http://www-maths.swan.ac.uk/staff/gg/papers/garkpr44.pdf}{pdf}). \item [[P. Deligne]], J. S. Milne, \emph{Tannakian categories}, Lect. notes in math. 900, 101--228, Springer 1982. \item A. Brugui\`e{}res, \emph{On a tannakian theorem due to Nori}, \href{http://imag.umontpellier.fr/~bruguieres/docs/ntan.pdf}{pdf}; \emph{Th\'e{}orie tannakienne non commutative}, Comm. Algebra \textbf{22}, 5817--5860, 1994 \end{itemize} [[!redirects reconstruction theorems]] [[!redirects reconstruction]] [[!redirects Tannakian reconstruction]] [[!redirects Tannakian reconstruction theorem]] [[!redirects Tannakian reconstruction theorems]] \end{document}