\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{red herring principle} \hypertarget{the_red_herring_principle}{}\section*{{The red herring principle}}\label{the_red_herring_principle} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{notes}{Notes}\dotfill \pageref*{notes} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{nonexamples}{Non-examples}\dotfill \pageref*{nonexamples} \linebreak \noindent\hyperlink{seminonexamples}{Semi-non-examples}\dotfill \pageref*{seminonexamples} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The mathematical \textbf{red herring principle} is the principle that in [[mathematics]], a ``red herring'' need not, in general, be either red or a herring. Frequently, in fact, it is conversely true that all herrings are red herrings. This often leads to mathematicians speaking of ``non-red herrings,'' and sometimes even to a redefinition of ``herring'' to include both the red and non-red versions. \hypertarget{notes}{}\subsection*{{Notes}}\label{notes} \begin{itemize}% \item Clearly, the term ``red herring'' here is not to be confused with the usual meaning, which typically refers to a deliberate attempt to divert or throw one off track, as for example a rhetorical tactic for this purpose, or a novelistic device. \item It should also not be thought that ``red herring'' as used here signals a pejorative, indicating for example ineptitude or lack of care in naming. For example, it may be that ``foo'' once meant a ``bar'', but over time the meaning of ``foo'' changed, so that while ``weak $*$-foo'' might seem strange if ``foo'' is taken in the modern sense, it made much better sense under the older (but mostly forgotten) meaning of ``foo''. \end{itemize} Thus, ``red herring'' as used here is to be interpreted neutrally: it refers to a name of a concept which might throw the reader off-track, by accident as it were. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item A [[manifold with boundary]] is not a [[manifold]]. This leads to the use of ``manifold without boundary.'' \item In [[linear algebra]], an [[associative algebra|algebra]] is usually defined to be associative, so a [[nonassociative algebra]] is not an algebra in this sense. This leads to the technically redundant use of ``associative algebra''. Furthermore, a ``nonassociative algebra'' \emph{might} happen to be associative; it just doesn't \emph{have} to be! \item Similarly, [[noncommutative geometry]] is really about \emph{not necessarily commutative} or \emph{possibly non-commutative} geometry. In fact, many tools developed in ``non-commutative geometry'' are also useful tools in ordinary commutative geometry. \item A [[star-autonomous category|\emph{-autonomous category]] is not an [[autonomous category]], but the reverse is almost true: a}symmetric* autonomous (a.k.a. [[compact closed category|compact closed]]) category is a fairly special case of a $*$-autonomous one. This red herring is apparently an accident of history: at the time $*$-autonomous categories were invented, ``autonomous category'' was sometimes used to mean a [[closed monoidal category]], of which $*$-autonomous categories are indeed a special case, but nowadays that usage has mostly disappeared. \item A [[linearly distributive category]] has essentially nothing to do with a [[distributive category]]. \item If a [[localizer]] refers to a class of maps in a [[presheaf category]], as it sometimes does, then a [[basic localizer]], being a class of maps in [[Cat]], is not a localizer. \item A [[multivalued function]] is not a [[function]], but a function is a special case of a multivalued function. \item A [[planar ternary ring]] is not a [[ring]]. A general ring is not a planar ternary ring either; their ``intersection'' is the class of [[division rings]]. \end{itemize} Some adjectives are almost universally used as ``red herring adjectives,'' i.e. placing that adjective in front of something makes it \emph{more} general in some way. Some red herring adjectives almost always have the same meaning, such as ``pseudo'' and ``lax,'' but others, such as ``weak,'' have different meanings in different contexts. \begin{itemize}% \item A [[weak factorization system]] is not a factorization system, as originally defined, but rather the reverse. This has led some people to the use of [[orthogonal factorization system]] in place of the classical term ``factorization system.'' \item A [[weak limit]] is not a [[limit]] in a similar way: it satisfies only existence but not uniqueness. \item Originally, [[n-category]] referred only to the strict version, so that a ``weak $n$-category'' was not an $n$-category. Nowadays some people (including many authors of the nLab) are trying to reverse this, so that $n$-category means the weak version, while the strict version needs an adjective added. Likewise for related concepts such as [[2-limit]] and [[strict 2-limit]]. \end{itemize} Sometimes a red herring is only a red herring in degenerate case, perhaps only one case: \begin{itemize}% \item Fixing a [[natural number]] $n$, a [[homogeneous polynomial]] of degree $n$ is almost always a [[polynomial]] of degree $n$, but there is one exception: the [[zero]] polynomial has no degree (or is degree $-1$ or degree $-\infty$, depending on conventions), yet it is homogeneous of any degree. \end{itemize} \hypertarget{nonexamples}{}\subsection*{{Non-examples}}\label{nonexamples} Some uses of terminology are similar in some ways, but don't quite fall under the same category. For instance, in a number of cases mathematicians working in a particular field tend to omit [[dichotomy between nice objects and nice categories|niceness]] adjectives, e.g.: \begin{itemize}% \item The generally accepted \emph{definition} of a [[ring]] does not include commutativity, but in [[algebraic geometry]] and [[commutative algebra]] it is an almost universal convention that all rings are taken to be commutative. However, almost every book concerning the subject announces its conventions early on. \item Algebraic topologists usually work with a [[convenient category of topological spaces]] rather than the category of all [[topological spaces]], but usually they simply say ``space'' to mean an object of their chosen convenient category. Some algebraic topologists (particularly of the MIT school) take this even further and say ``space'' to mean [[simplicial set]]. In the Chicago school, this is occasionally stretched even further, with ``space'' meaning [[spectrum]] (although this is arguably more of a joke than a common usage). \end{itemize} These terminological uses can create situations that appear similar to actual red herrings, such as the use of ``noncommutative ring'' by people who are familiar with using ``ring'' to mean ``commutative ring.'' However, since the actual definitions of terms like ``ring'' and ``topological space'' is generally accepted to be unchanged (as opposed to the commonly used abbreviations), these are not true red herrings. \hypertarget{seminonexamples}{}\subsubsection*{{Semi-non-examples}}\label{seminonexamples} Sometimes, adding an adjective does not destroy the property that the noun has, but the noun now has its property in a different way, e.g.: \begin{itemize}% \item A [[contravariant functor]] from $C$ to $D$ \emph{is} still a functor, however not from $C$ to $D$, but from $C^{op}$ to $D$ (or equivalently from $C$ to $D^{op}$). \end{itemize} [[!redirects red herring]] [[!redirects red herring principle]] [[!redirects the red herring principle]] \end{document}