\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{reduced homology} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homological_algebra}{}\paragraph*{{Homological algebra}}\label{homological_algebra} [[!include homological algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{reduced_singular_homology}{Reduced singular homology}\dotfill \pageref*{reduced_singular_homology} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{RelationToOrdinaryHomology}{Relation to ordinary homology}\dotfill \pageref*{RelationToOrdinaryHomology} \linebreak \noindent\hyperlink{RelationToRelativeHomology}{Relation to relative homology}\dotfill \pageref*{RelationToRelativeHomology} \linebreak \noindent\hyperlink{RelationToWedgeSums}{Relation to wedge sums}\dotfill \pageref*{RelationToWedgeSums} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{for_singular_homology}{For singular homology}\dotfill \pageref*{for_singular_homology} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In general, the [[homology]] of a [[point]] is not trivial but is concentrated in degree 0 on the given [[coefficient]] object. For some applications, though, it is convenient to divide out that contribution such as to have the homology of the point be entirely trivial. This is called \emph{reduced homology}. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{reduced_singular_homology}{}\subsubsection*{{Reduced singular homology}}\label{reduced_singular_homology} We discuss the reduced version of [[singular homology]]. Let $X$ be a [[topological space]]. Write $C_\bullet(X)$ for its [[singular chain complex]]. \begin{defn} \label{}\hypertarget{}{} The \textbf{augmentation map} is the homomorphism of abelian groups \begin{displaymath} \epsilon \colon C_0(X) \to \mathbb{Z} \end{displaymath} which adds up all the coefficients of all 0-chains: \begin{displaymath} \epsilon \colon \colon \sum_{i} n_i \sigma_i \mapsto \sum_i n_i \,. \end{displaymath} Since the boundary of a 1-chain is in the [[kernel]] of this map, it constitutes a [[chain map]] \begin{displaymath} \epsilon \colon C_\bullet(X) \to \mathbb{Z} \,, \end{displaymath} where now $\mathbb{Z}$ is regarded as a chain complex concentrated in degree 0. \end{defn} \begin{defn} \label{ReducedSingularChainComplex}\hypertarget{ReducedSingularChainComplex}{} The \textbf{reduced singular chain complex} $\tilde C_\bullet(X)$ of $X$ is the [[kernel]] of the augmentation map, the chain complex sitting in the [[short exact sequence]] \begin{displaymath} 0 \to \tilde C_\bullet(X) \to C_\bullet(X) \stackrel{\epsilon}{\to} \mathbb{Z} \to 0 \,. \end{displaymath} The \textbf{reduced singular homology} $\tilde H_\bullet(X)$ of $X$ is the [[chain homology]] of the reduced singular chain complex \begin{displaymath} \tilde H_\bullet(X) \coloneqq H_\bullet(\tilde C_\bullet(X)) \,. \end{displaymath} \end{defn} Equivalently: \begin{defn} \label{}\hypertarget{}{} The \textbf{reduced singular homology} of $X$, denoted $\tilde H_\bullet(X)$, is the [[chain homology]] of the [[augmentation|augmented]] chain complex \begin{displaymath} \cdots \to C_2(X) \stackrel{\partial_1}{\to} C_1(X) \stackrel{\partial_0}{\to} C_0(X) \stackrel{\epsilon}{\to} \mathbb{Z} \to 0 \,. \end{displaymath} \end{defn} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{RelationToOrdinaryHomology}{}\subsubsection*{{Relation to ordinary homology}}\label{RelationToOrdinaryHomology} Let $X$ be a [[topological space]], $H_\bullet(X)$ its [[singular homology]] and $\tilde H_\bullet(X)$ its reduced singular homology, def. \ref{ReducedSingularChainComplex}. \begin{prop} \label{RelationBetweenReducedSingularAndSingular}\hypertarget{RelationBetweenReducedSingularAndSingular}{} For $n \in \mathbb{N}$ there is an [[isomorphism]] \begin{displaymath} H_n(X) \simeq \left\{ \itexarray{ \tilde H_n(X) & for \; n \geq 1 \\ \tilde H_0(X) \oplus \mathbb{Z} & for\; n = 0 } \right. \end{displaymath} \end{prop} \begin{proof} The [[homology long exact sequence]] of the defining short exact sequence $\tilde C_\bullet(C) \to C_\bullet(X) \stackrel{\epsilon}{\to} \mathbb{Z}$ is, since $\mathbb{Z}$ here is concentrated in degree 0, of the form \begin{displaymath} \cdots \to \tilde H_n(X) \to H_n(X) \to 0 \to \cdots \to 0 \to \cdots \to \tilde H_1(X) \to H_1(X) \to 0 \to \tilde H_0(X) \to H_0(X) \stackrel{\epsilon}{\to} \mathbb{Z} \to 0 \,. \end{displaymath} Here [[exact sequence|exactness]] says that all the morphisms $\tilde H_n(X) \to H_n(X)$ for positive $n$ are [[isomorphisms]]. Moreover, since $\mathbb{Z}$ is a [[free abelian group]], hence a [[projective object]], the remaining [[short exact sequence]] \begin{displaymath} 0 \to \tilde H_0(X) \to H_0(X) \to \mathbb{Z} \to 0 \end{displaymath} is [[split exact sequence|split]] (as discussed there) and hence $H_0(X) \simeq \tilde H_0(X) \oplus \mathbb{Z}$. \end{proof} \begin{prop} \label{}\hypertarget{}{} For $X = *$ the [[point]], the morphism \begin{displaymath} H_0(\epsilon) \colon H_0(X) \to \mathbb{Z} \end{displaymath} is an [[isomorphism]]. Accordingly the reduced homology of the point vanishes in every degree: \begin{displaymath} \tilde H_\bullet(*) \simeq 0 \,. \end{displaymath} \end{prop} \begin{proof} By the discussion at \emph{\href{singular%20homology#RelationToHomotopyGroups}{Singular homology -- Relation to homotopy groups}} we have that \begin{displaymath} H_n(*) \simeq \left\{ \itexarray{ \mathbb{Z} & for \; n = 0 \\ 0 & otherwise } \right. \,. \end{displaymath} Moreover, it is clear that $\epsilon \colon C_0(*) \to \mathbb{Z}$ is the [[identity]] map. \end{proof} \hypertarget{RelationToRelativeHomology}{}\subsubsection*{{Relation to relative homology}}\label{RelationToRelativeHomology} \begin{prop} \label{}\hypertarget{}{} For $X$ an [[inhabited set|inhabited]] [[topological space]], its reduced singular homology, def. \ref{ReducedSingularChainComplex}, coincides with its [[relative singular homology]] relative to any base point $x \colon * \to X$: \begin{displaymath} \tilde H_\bullet(X) \simeq H_\bullet(X,*) \,. \end{displaymath} \end{prop} \begin{proof} Consider the sequence of [[topological subspace]] inclusions \begin{displaymath} \emptyset \hookrightarrow * \stackrel{x}{\hookrightarrow} X \,. \end{displaymath} By the discussion at \emph{\href{relative%20homology#LongExactSequences}{Relative homology - long exact sequences}} this induces a [[long exact sequence]] of the form \begin{displaymath} \cdots \to H_{n+1}(*) \to H_{n+1}(X) \to H_{n+1}(X,*) \to H_n(*) \to H_n(X) \to H_n(X,*) \to \cdots \to H_1(X) \to H_1(X,*) \to H_0(*) \stackrel{H_0(x)}{\to} H_0(X) \to H_n(X,*) \to 0 \,. \end{displaymath} Here in positive degrees we have $H_n(*) \simeq 0$ and therefore [[exact sequence|exactness]] gives [[isomorphisms]] \begin{displaymath} H_n(X) \stackrel{\simeq}{\to} H_n(X,*)\;\; \forall_{n \geq 1} \end{displaymath} and hence with prop. \ref{RelationBetweenReducedSingularAndSingular} isomorphisms \begin{displaymath} \tilde H_n(X) \stackrel{\simeq}{\to} H_n(X,*)\;\; \forall_{n \geq 1} \,. \end{displaymath} It remains to deal with the case in degree 0. To that end, observe that $H_0(x) \colon H_0(*) \to H_0(X)$ is a [[monomorphism]]: for this notice that we have a [[commuting diagram]] \begin{displaymath} \itexarray{ H_0(*) &\stackrel{id}{\to}& H_0(*) \\ {}^{\mathllap{H_0(x)}}\downarrow &{}^{\mathllap{H_0(f)}}\nearrow& \downarrow^{\mathrlap{H_0(\epsilon)}}_\simeq \\ H_0(X) &\stackrel{H_0(\epsilon)}{\to}& \mathbb{Z} } \,, \end{displaymath} where $f \colon X \to *$ is the terminal map. That the outer square commutes means that $H_0(\epsilon) \circ H_0(x) = H_0(\epsilon)$ and hence the composite on the left is an [[isomorphism]]. This implies that $H_0(x)$ is an injection. Therefore we have a [[short exact sequence]] as shown in the top of this diagram \begin{displaymath} \itexarray{ 0 &\to& H_0(*) &\stackrel{H_0(x)}{\hookrightarrow}& H_0(X) &\stackrel{}{\to}& H_0(X,*) &\to& 0 \\ && & {}_{\mathllap{\simeq}}\searrow & \downarrow^{\mathrlap{H_0(\epsilon)}} & \\ && && \mathbb{Z} } \,. \end{displaymath} Using this we finally compute \begin{displaymath} \begin{aligned} \tilde H_0(X) & \coloneqq ker H_0(\epsilon) \\ & \simeq coker( H_0(x) ) \\ & \simeq H_0(X,*) \end{aligned} \,. \end{displaymath} \end{proof} \begin{remark} \label{}\hypertarget{}{} Moreover, for ``good'' inclusions $A \hookrightarrow X$ of topological space, the reduced singular homology of the quotient $X/A$ is isomorphic to the $A$-[[relative singular homology]] of $X$. See at \emph{\href{relative+homology#RelationToQuotientTopologicalSpaces}{Relative homology - Relation to reduced homology of quotient topological spaces}}. \end{remark} \hypertarget{RelationToWedgeSums}{}\subsubsection*{{Relation to wedge sums}}\label{RelationToWedgeSums} Let $\{* \to X_i\}_i$ be a set of [[pointed object|pointed]] [[topological spaces]]. Write $\vee_i X_i \in Top$ for their [[wedge sum]] and write $\iota_i \colon X_i \to \vee_i X_i$ for the canonical inclusion functions. \begin{prop} \label{}\hypertarget{}{} For each $n \in \mathbb{N}$ the homomorphism \begin{displaymath} (\tilde H_n(\iota_i))_i \colon \oplus_i \tilde H_n(X_i) \to \tilde H_n(\vee_i X_i) \end{displaymath} is an [[isomorphism]]. \end{prop} For instance (\hyperlink{Hatcher}{Hatcher, cor. 2.25}). \begin{proof} This follows with \emph{\href{relative+homology#HomologyOfQuotientSpace}{this proposition}} at \emph{[[relative homology]]}. \end{proof} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{for_singular_homology}{}\subsubsection*{{For singular homology}}\label{for_singular_homology} For $X$ a [[topological space]], write $H_n(X)$ for its [[singular homology]] with integer coefficients. \begin{example} \label{ReducedHomologyOfPoints}\hypertarget{ReducedHomologyOfPoints}{} If $X$ is a [[contractible topological space]], then for all $n \in \mathbb{N}$ \begin{displaymath} \tilde H_n(X) \simeq 0 \,. \end{displaymath} \end{example} \begin{example} \label{ReducedHomologyOf0Sphere}\hypertarget{ReducedHomologyOf0Sphere}{} The reduced singular homology of the 0-[[sphere]] $S^0 \simeq {*} \coprod {*}$ is \begin{displaymath} \tilde H_n(S^0) \simeq \left\{ \itexarray{ \mathbb{Z} & if \; n = 0 \\ 0 & otherwise } \right. \,. \end{displaymath} \end{example} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[reduced cohomology]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Reduced singular homology is discussed for instance around p. 119 of \begin{itemize}% \item [[Alan Hatcher]], \emph{\href{http://www.math.cornell.edu/~hatcher/AT/ATpage.html}{Algebraic Topology}} \end{itemize} [[!redirects reduced singular homology]] \end{document}