\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{reductions deformations resolutions in physics} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] The SVG figures are still not displaying completely properly. The text labels seem to be almost all left aligned, while some of them should be right or center aligned. In particular, the (?) in the last figure should be centered. --Igor \hypertarget{reductions_deformations_and_resolutions_in_the_service_of_physics}{}\section*{{Reductions, deformations, and resolutions in the service of physics}}\label{reductions_deformations_and_resolutions_in_the_service_of_physics} \noindent\hyperlink{outline}{Outline}\dotfill \pageref*{outline} \linebreak \noindent\hyperlink{reductions_deformations_resolutions}{Reductions, deformations, resolutions}\dotfill \pageref*{reductions_deformations_resolutions} \linebreak \noindent\hyperlink{summary_of_construction}{Summary of construction}\dotfill \pageref*{summary_of_construction} \linebreak \noindent\hyperlink{scope_and_contents}{Scope and contents}\dotfill \pageref*{scope_and_contents} \linebreak \hypertarget{outline}{}\subsection*{{Outline}}\label{outline} These aim of these notes is to summarize the various mathematical structures and constructions employed in physics to build models of [[classical field theory|classical]] and [[quantum field theories]]. To avoid the (yet non-existent) rigorous construction of non-linear (interacting) field theories, non-linearities are treated as formal perturbations. Theories with [[gauge theory|gauge invariance]] ([[first class constraints]]) are treated within the [[BV-BRST formalism]]. \hypertarget{reductions_deformations_resolutions}{}\subsubsection*{{Reductions, deformations, resolutions}}\label{reductions_deformations_resolutions} There are multiple operations on classical and quantum field theories that produce new ones. I roughly classify them into three kinds. These terms are not meant to be rigorously defined or taken literally. They mostly reflect how these operations are viewed in the physics literature. \begin{itemize}% \item \textbf{reductions} \end{itemize} : These are easy/natural operations that are essentially uniquely : defined. The uniqueness may not always be mathematically precise, but : precision can be achieved by considering extra physical input. : Suggestive examples are \emph{differentiation} and \emph{computing cohomology}. * \textbf{deformations} : These are generally difficult operations inverse to a reduction, that : are themselves essentially uniquely defined. Uniqueness is considered : in the same sense as above. A suggestive examples is \emph{integration}. * \textbf{resolutions} : These are operations inverse to a reduction that are not uniquely : defined and involve making significant choices in their application. : Suggestive examples are \emph{solving underdetermined equations} and : \emph{choosing a resolution} in homological algebra. The relevant examples that will appear in these notes are the following. A solid arrow represents a reduction, while a dashed arrow represents the inverse deformation or resolution, in the senses described above. [[!include reductions deformations resolutions in physics {\tt \symbol{62}} cq-arr]] The transition to the \emph{[[classical limit]]} corresponds to taking the limit $\hbar\to0$, which is a parameter explicitly appearing in all physically relevant quantum systems. The inverse operation is \emph{quantization}, which corresponds to the mathematical field technically called [[deformation quantization]]. [[!include reductions deformations resolutions in physics {\tt \symbol{62}} ln-arr]] Explicit solutions or other kinds of information is readily available for linear field theories. Thus, often, the first step to understanding a non-linear field theory is to consider its \emph{linearization}. The inverse operation of deforming the linear theory with a \emph{non-linear perturbation} is often very difficult and thus considered in the physics literature mostly at the level of formal power series in the perturbation parameter. [[!include reductions deformations resolutions in physics {\tt \symbol{62}} pg-arr]] Many physical theories are difficult to describe without introducing extra/non-physical/redundant so-called [[gauge theory|gauge degrees of freedom]] and at the same time so-called [[gauge symmetry]] acting on them. However, given such a description, the physical theory must be recovered from the \emph{quotient by gauge transformations}. The description involving gauge degrees of freedom is highly non-unique, but a particularly convenient (though still not unique) one is provided by the \emph{BV-BRST} resolution. \hypertarget{summary_of_construction}{}\subsubsection*{{Summary of construction}}\label{summary_of_construction} The operations described above can be used as the axes of a three-dimensional space, inhabited by what can be called the resolution-deformation-reduction cube of [[quantization]]. Note that [[gauge fixing]] can be considered as one of the (non-uniquely defined) steps of the BV-BRST construction. [[!include reductions deformations resolutions in physics {\tt \symbol{62}} bv-axes]] One corner of the cube corresponds to some classical, non-linear, physical theory. The goal of quantization is to jump to the corner with the quantum version of this theory. This is difficult to do directly because of the non-linearity and when gauge degrees of freedom are present. The usual procedure is then to construct the remaining auxiliary vertices of the cube and to take the indirect path, indicated in pale blue. The meaning of the solid and dashed lines is the same as above. [[!include reductions deformations resolutions in physics {\tt \symbol{62}} bv-diag]] \hypertarget{scope_and_contents}{}\subsubsection*{{Scope and contents}}\label{scope_and_contents} \begin{itemize}% \item Classical and quantum mechanics \end{itemize} : * algebraic structure of [[classical mechanics]] : * algebraic structure of [[quantum mechanics]] : * [[classical limit]] and ([[deformation quantization|deformation]]) [[quantization]] * Classical and quantum field theory : * geometry of [[space-time]] : * algebraic and geometric structure of [[classical field theory]] : * algebraic and geometric structure of [[quantum field theory]] * Construction of field theories (simplified) : * space-time, field content, dynamics : * [[phase space|(covariant) phase space]] : * algebra of [[observables]] : * (deformation) [[quantization]] * Examples of field theories : * [[scalar field]] (Klein-Gordon) : * vector field ([[electromagnetism|Maxwell]], [[Yang-Mills theory|Yang-Mills]]) : * [[gravity]] (general relatvity) : * [[spinor]] field (Dirac) * [[fermion|Fermi fields]] and [[supergeometry]] * [[gauge invariance|Gauge invariance]]/degeneracy : * [[Noether's theorem|Nöther's second theorem]] : * algebra and geometry of [[gauge transformation]]s : * physical theory from quotient by gauge * [[BV-BRST formalism|BV-BRST construction]] of gauge theories : * BV-BRST (Koszul-Tate) resolution of physical theory : * [[gauge fixing]], well-posedness, [[Poisson algebra|Poisson structure]] : * [[cohomology]] * BV-BRST, (deformation) quantization and [[quantum anomaly|gauge anomalies]] \end{document}