\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{reflective factorization system} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{factorization_systems}{}\paragraph*{{Factorization systems}}\label{factorization_systems} [[!include factorization systems - contents]] \hypertarget{reflective_factorization_systems}{}\section*{{Reflective factorization systems}}\label{reflective_factorization_systems} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{characterization}{Characterization}\dotfill \pageref*{characterization} \linebreak \noindent\hyperlink{construction_of_factorizations}{Construction of factorizations}\dotfill \pageref*{construction_of_factorizations} \linebreak \noindent\hyperlink{Localization}{Relation to localizations}\dotfill \pageref*{Localization} \linebreak \noindent\hyperlink{reflective_stable_factorization_systems}{Reflective stable factorization systems}\dotfill \pageref*{reflective_stable_factorization_systems} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{reflective factorization system} is an [[orthogonal factorization system]] $(E,M)$ that is determined by the [[reflective subcategory]] $M/1$. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $C$ be a [[category]] with a [[terminal object]] $1$. If $(E,M)$ is an (orthogonal) [[orthogonal factorization system|factorization system]] on $C$, then the [[full subcategory]] $M/1 \subseteq C$ (consisting of those objects $X$ for which $X\to 1$ is in $M$) is [[reflective subcategory|reflective]]. The reflection of $Y\in C$ is obtained by the $(E,M)$-factorization $Y \xrightarrow{e} \ell Y \xrightarrow{m} 1$. (e.g. (\hyperlink{RosickyTholen08}{Rosicky-Tholen 08, 2.10})) In fact, in this we do not need $(E,M)$ to be a factorization system; only a [[prefactorization system]] with the property that any morphism with [[terminal object|terminal]] [[codomain]] admits an $(E,M)$-factorization. For the nonce, let us call such a prefactorization system \emph{favorable}. Conversely, suppose that $A\hookrightarrow C$ is a [[reflective subcategory]], and define $E$ to be the class of morphisms inverted by the [[reflector]] $\ell\colon C\to A$, and define $M = E^\perp$. Then $(E,M)$ is a favorable prefactorization system. In this way we obtain an [[adjunction]] \begin{displaymath} \Phi : \text{reflective subcategories} \; \rightleftarrows \; \text{favorable prefactorization systems} : \Psi. \end{displaymath} Here subcategories form a (possibly [[large category|large]]) [[poset]] ordered by inclusion, and prefactorization systems form a poset ordered by inclusion of the right classes $M$. The [[unit of an adjunction|unit]] of this adjunction is easily seen to be an [[isomorphism]]. That is, given a reflective subcategory $A$, if we construct $(E,M)$ from it as above, then $A \simeq M/1$. Therefore, the adjunction allows us to identify reflective subcategories with certain favorable prefactorization systems. The prefactorization systems arising in this way --- equivalently, those for which $(E,M) = \Phi \Psi(E,M)$ --- are called the \textbf{reflective prefactorization systems}. A \textbf{reflective factorization system} is a reflective prefactorization system which happens to be a factorization system. More generally, for any favorable factorization system $(E,M)$, we have a reflective prefactorization system $\Phi \Psi(E,M)$, called the \textbf{reflective interior} of $(E,M)$. Dualizing, it also has a \textbf{coreflective closure}. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{characterization}{}\subsubsection*{{Characterization}}\label{characterization} The following is Theorem 2.3 in \hyperlink{CHK}{CHK}. \begin{theorem} \label{}\hypertarget{}{} Let $(E',M')$ be the reflective interior of $(E,M)$. Then: \begin{enumerate}% \item $f\in E'$ precisely when there exists a $g\in E$ such that $g f \in E$. \item $(E,M)$ is reflective precisely when $g f\in E$ and $g\in E$ together imply $f\in E$. \end{enumerate} \end{theorem} \begin{proof} That (1) implies (2) is obvious, so we prove (1). Since $E'$ is, by definition, the class of maps inverted by the reflector into $M/1$, it satisfies the [[2-out-of-3 property]]. Since $E\subseteq E'$, it follows that $f g\in E$ and $g\in E$ imply $f\in E'$. Conversely, if $f\colon X\to Y$ is in $E'$, then we have $\eta_Y \circ f = \ell(f) \circ \eta_X$ by naturality, where $\ell$ is the reflector into $M/1$ and $\eta$ its unit. But by construction of $\ell$, $\eta_Y$ and $\eta_X$ are in $E$, and by assumption, $\ell(f)$ is invertible; hence we can take $g = \eta_Y$. \end{proof} Note that the left class in any orthogonal factorization system is automatically closed under composition, contains the isomorphisms, and satisfies the property that $g f \in E$ and $f\in E$ together imply $g\in E$. Therefore, $(E,M)$ is reflective precisely when $E$ is a system of [[category with weak equivalences|weak equivalences]]. See \hyperlink{Localization}{Relation to Localization}, below. \hypertarget{construction_of_factorizations}{}\subsubsection*{{Construction of factorizations}}\label{construction_of_factorizations} The following is a slightly generalized version of Corollary 3.4 from \hyperlink{CHK}{CHK}. \begin{theorem} \label{}\hypertarget{}{} Suppose that $C$ is finitely complete and [[M-complete category|M-complete]] for some factorization system $(E,M)$, where $M$ consists of [[monomorphisms]] and contains the [[split monomorphism|split monics]]. Then any reflective prefactorization system on $C$ is a factorization system. \end{theorem} \begin{proof} This follows directly from \href{/nlab/show/M-complete+category#OFSFromAdjunction}{this theorem} applied to the reflection adjunction. \end{proof} The following is a consequence of Theorems 4.1 and 4.3 from \hyperlink{CHK}{CHK}. \begin{theorem} \label{SemiLeftExact}\hypertarget{SemiLeftExact}{} Suppose that $C$ is finitely complete and that $(E,M)$ is a reflective prefactorization system on $C$ such that $E$-morphisms are stable under pullback along $M$-morphisms. Then $(E,M)$ is a factorization system. \end{theorem} \begin{proof} Write $\ell$ for the corresponding reflection. Now given $f\colon A\to B$, let $m$ be the pullback of $\ell(f)$ along $\eta_B\colon B \to \ell B$: \begin{displaymath} \itexarray{ Y & \overset{g}{\to} & \ell A \\ ^m \downarrow & & \downarrow^{\ell(f)}\\ B & \underset{\eta_B}{\to} & \ell B} \end{displaymath} By closure properties of prefactorization systems, any morphism in $M/1$ lies in $M$, so in particular $\ell(f)\in M$. Since $M$ is stable under pullback (being, again, the right class of a prefactorization system), we have $m\in M$. But $f$ factors through $m$, by the universal property of the pullback applied to the naturality square for $\eta$ at $f$. Thus we have $f = m e$ and it suffices to show $e\in E$. However, we also have $g e = \eta_A$, where $\eta_A\in E$ by definition, and $g\in E$ by assumption (being the pullback of $\eta_B\in E$ along $\ell(f)\in M$). By the characterization theorem above, since $(E,M)$ is reflective this implies $e\in E$, as desired. \end{proof} A reflection satisfying the condition of Theorem \ref{SemiLeftExact} is called \textbf{[[semi-left-exact reflection|semi-left-exact]]} (which see, for more equivalent characterizations). Note that saying that $E$-morphisms are stable under \emph{all} pullbacks is equivalent to saying that $\ell$ preserves all pullbacks, hence all finite limits---i.e. it is left-exact. In this case the factorization system is called [[stable factorization system|stable]]. Thus the terminology ``semi-left-exact'' for the weaker assumption. However, semi-left-exactness is not necessary for the ``one-step'' construction in the proof of Theorem \ref{SemiLeftExact} to work. The necessary and sufficient condition is that the reflection is \textbf{simple}; one characterization of this is that a morphism $f$ is in $M$ if and only if its naturality square for the reflector $\ell:C\to A$ is a pullback. For others, see \hyperlink{CHK}{CHK, Theorem 4.1}. \hypertarget{Localization}{}\subsubsection*{{Relation to localizations}}\label{Localization} For any favorable prefactorization system $(E,M)$, it is easy to show that $M/1$ is the [[localization]] of $C$ at $E$. If $(E',M')$ is the reflective interior of $(E,M)$, then since $E'$ is the class of maps inverted by the reflector into $M/1$, it is precisely the \emph{saturation} of $E$ in the sense of localization (the class of maps inverted by the localization at $E$). \hypertarget{reflective_stable_factorization_systems}{}\subsubsection*{{Reflective stable factorization systems}}\label{reflective_stable_factorization_systems} A reflective factorization system on a finitely [[complete category]] is a [[stable factorization system]] if and only if its corresponding [[reflector]] preserves [[finite limits]]. A stable reflective factorization system is sometimes called \textbf{local}. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} Obviously, any [[reflective subcategory]] gives rise to a reflective factorization system. Here are a few examples. \begin{itemize}% \item The category of complete [[metric spaces]] is reflective in the category of all metric spaces; the reflector is completion. In the corresponding factorization system, $E$ is the class of [[dense subspace|dense embeddings]]. \item Given a small [[site]] $S$, the [[sheaf topos]] $Sh(S)$ is a reflective subcategory of the [[presheaf topos]] $Psh(S)$. In the corresponding factorization system, $E$ is the class of [[local isomorphisms]]. \end{itemize} On the other hand, many commonly encountered factorization systems are not reflective. \begin{itemize}% \item The factorization system $(Epi, Mono)$ on [[Set]] is not reflective. If $(E',M')$ is its reflective interior, then $E'$ is the class of morphisms $e\colon X\to Y$ such that if $Y$ is [[inhabited set|inhabited]], so is $X$, while $M'$ is the class of morphisms $m\colon X\to Y$ such that if $X$ is inhabited, then $m$ is an isomorphism. \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[semi-left-exact reflection]] \item [[stable factorization system]] \item [[closure operator]] \item [[reflective localization]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The basic theory is developed in \begin{itemize}% \item Cassidy and H\'e{}bert and [[Max Kelly|Kelly]], ``Reflective subcategories, localizations, and factorization systems''. \emph{J. Austral. Math Soc. (Series A)} 38 (1985), 287--329 (\href{http://journals.cambridge.org/download.php?file=%2FJAZ%2FJAZ1_38_03%2FS1446788700023624a.pdf&code=5796045be8904c5183c2e95bce65491e}{pdf}) \end{itemize} \begin{itemize}% \item Carboni and [[George Janelidze|Janelidze]] and [[Max Kelly|Kelly]] and [[Paré]], ``On localization and stabilization for factorization systems'', \emph{Appl. Categ. Structures} 5 (1997), 1--58 \end{itemize} Discussion of ``simple'' reflective factorization systems and of simultaneously reflective and coreflective factorization systems is in \begin{itemize}% \item [[Jiri Rosicky]], [[Walter Tholen]], \emph{Factorization, Fibration and Torsion}, Journal of Homotopy and Related Structures, Vol. 2(2007), No. 2, pp. 295-314 (\href{http://arxiv.org/abs/0801.0063}{arXiv:0801.0063}, \href{http://www.emis.de/journals/JHRS/volumes/2007/n2a14/}{publisher}) \end{itemize} [[!redirects reflective factorization system]] [[!redirects reflective factorization systems]] [[!redirects reflective prefactorization system]] [[!redirects reflective prefactorization systems]] [[!redirects coreflective factorization system]] [[!redirects coreflective factorization systems]] [[!redirects coreflective prefactorization system]] [[!redirects coreflective prefactorization systems]] [[!redirects reflective interior]] [[!redirects coreflective closure]] [[!redirects simple reflection]] [[!redirects simple reflections]] \end{document}