\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{reflective localization} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{locality_and_descent}{}\paragraph*{{Locality and descent}}\label{locality_and_descent} [[!include descent and locality - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{ReflectiveLoc}{Reflective localization}\dotfill \pageref*{ReflectiveLoc} \linebreak \noindent\hyperlink{ReflectionOntoLocalObjects}{Reflection onto local objects}\dotfill \pageref*{ReflectionOntoLocalObjects} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A [[localization of a category]]/[[localization of an (∞,1)-category|of an (∞,1)-category]] is called \textbf{reflective} if its [[localization functor]] has a [[fully faithful functor|fully faithful]] [[right adjoint]], hence if it is the reflector of a [[reflective subcategory]]/[[reflective sub-(∞,1)-category]]-inclusion. In fact every [[reflective subcategory]] inclusion exhibits a reflective localization (Prop. \ref{ReflectiveSubcategoriesAreLocalizations} below). For reflective localizations the localized category has a particularly useful description (Prop. \ref{ReflectiveLocalizationGivenByLocalObjects} below): It is equivalent to the [[full subcategory]] of \emph{[[local objects]]} (Def. \ref{LocalObjects} below). Therefore, sometimes reflective localizations at a class $S$ or morphism are understood as the default concept of localization, in fact often reflection onto the [[full subcategory]] of $S$-[[local objects]] (Def. \ref{LocalizationAtACollectionOfMorphisms} below) is understood by default. Notably [[left Bousfield localizations]] are [[presentable (infinity,1)-category|presentations]] of reflective [[localizations of (∞,1)-categories]] in this sense. These reflections onto $S$-local objects satisfy the universal property of an $S$-[[localization]] (only) for all \emph{[[left adjoint]]} functors that invert the class $S$ (Prop. \ref{ReflectionOntoLocalObjectsIsLocalizationWithRespectToLeftAdjoints} below). \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{ReflectiveLoc}{}\subsubsection*{{Reflective localization}}\label{ReflectiveLoc} \begin{defn} \label{CategoryWithWeakEquivalences}\hypertarget{CategoryWithWeakEquivalences}{} \textbf{([[category with weak equivalences]])} A \emph{[[category with weak equivalences]]} is \begin{enumerate}% \item a [[category]] $\mathcal{C}$, \item a [[subcategory]] $W \subset \mathcal{C}$ \end{enumerate} such that the [[morphisms]] in $W$ \begin{enumerate}% \item include all the [[isomorphisms]] of $\mathcal{C}$, \item satisfy \emph{[[two-out-of-three]]}: If for $g$, $f$ any two [[composition|composable]] [[morphisms]] in $\mathcal{C}$, two out of the set $\{g,\, f,\, g \circ f \}$ are in $W$, then so is the third. \begin{displaymath} \itexarray{ & {}^{\mathllap{f}}\nearrow && \searrow^{\mathrlap{g}} \\ && \underset{ g \circ f }{\longrightarrow} } \end{displaymath} \end{enumerate} \end{defn} \begin{defn} \label{LocalizationOfACategory}\hypertarget{LocalizationOfACategory}{} \textbf{([[localization of a category]])} Let $W \subset \mathcal{C}$ be a [[category with weak equivalences]] (Def. \ref{CategoryWithWeakEquivalences}). Then the \emph{[[localization of a category|localization]]} of $\mathcal{C}$ at $W$ is, if it exists \begin{enumerate}% \item a [[category]] $\mathcal{C}[W^{-1}]$ \item a [[functor]] $\gamma \;\colon\; \mathcal{C} \longrightarrow \mathcal{C}[W^{-1}]$ \end{enumerate} such that \begin{enumerate}% \item $\gamma$ sends all morphisms in $W \subset \mathcal{C}$ to [[isomorphisms]], \item $\gamma$ is [[universal property|universal with this property]]: If $F \;\colon\; \mathcal{C} \longrightarrow \mathcal{D}$ is any functor with this property, then it factors through $\gamma$, up to [[natural isomorphism]]: \begin{displaymath} F \;\simeq\; D F \circ \gamma \phantom{AAAAAAA} \itexarray{ \mathcal{C} && \overset{F}{\longrightarrow} && \mathcal{D} \\ & {}_{\mathllap{\gamma}}\searrow &{}^{\rho}\Downarrow_{\simeq}& \nearrow_{\mathrlap{D F}} \\ && \mathcal{C}[W^{-1}] } \end{displaymath} and any two such factorizations $D F$ and $D^' F$ are related by a unique [[natural isomorphism]] $\kappa$ compatible with $\rho$ and $\rho^'$: \end{enumerate} \begin{equation} \itexarray{ \mathcal{C} && \overset{F}{\longrightarrow} && \mathcal{D} \\ & {}_{\mathllap{\gamma}}\searrow &{}^{\rho}\Downarrow_{\simeq}& \nearrow_{\mathrlap{D F}} && \searrow^{\mathrlap{id}} \\ && \mathcal{C}[W^{-1}] && {}_{\simeq}\seArrow^{\kappa} && \mathcal{D} \\ && & {}_{\mathllap{id}}\searrow && \nearrow_{\mathrlap{D^' F}} \\ && && \mathcal{C}[W^{-1}] } \phantom{AAAA} = \phantom{AAAA} \itexarray{ \mathcal{C} && \overset{F}{\longrightarrow} && \mathcal{D} \\ & {}_{\mathllap{\gamma}}\searrow &{}^{\rho^'}\Downarrow_{\simeq}& \nearrow_{\mathrlap{D^' F}} \\ && \mathcal{C}[W^{-1}] } \label{CompatibleNaturalIsoForLocalization}\end{equation} Such a localization is called a \emph{[[reflective localization]]} if the localization functor has a [[fully faithful functor|fully faithful]] [[right adjoint]], exhibiting it as the reflection functor of a [[reflective subcategory]]-inclusion \begin{displaymath} \mathcal{C}[W^{-1}] \underoverset {\underset{\phantom{AAAA}}{\hookrightarrow}} {\overset{ \phantom{AA} \gamma \phantom{AA} }{\longleftarrow}} {\bot} \mathcal{C} \end{displaymath} \end{defn} \hypertarget{ReflectionOntoLocalObjects}{}\subsubsection*{{Reflection onto local objects}}\label{ReflectionOntoLocalObjects} It turns out (Prop. \ref{ReflectiveLocalizationGivenByLocalObjects}) below, that reflective localizations at a collection $S$ of [[morphisms]] are, when they exist, [[reflective subcategory|reflections]] onto the [[full subcategory]] of \emph{$S$-[[local objects]]} (Def. \ref{LocalObjects} below). Often this reflection of $S$-[[local objects]] is what one is more interested in than the [[universal property]] of the $S$-[[localization]] according to (Def. \ref{CategoryWithWeakEquivalences}). This \emph{reflection onto local objects} (Def. \ref{LocalizationAtACollectionOfMorphisms} below) is what is often meant by default with ``localization'' (for instance in [[Bousfield localization]]). \begin{defn} \label{LocalObjects}\hypertarget{LocalObjects}{} \textbf{([[local object]])} Let $\mathcal{C}$ be a [[category]] and let $S \subset Mor_{\mathcal{C}}$ be a set of [[morphisms]]. Then an [[object]] $X \in \mathcal{C}$ is called an \emph{$S$-[[local object]]} if for all $A \overset{s}{\to} B \; \in S$ the [[hom-functor]] from $s$ into $X$ yields a [[bijection]] \begin{displaymath} Hom_{\mathcal{C}}(s,X) \;\colon\; Hom_{\mathcal{C}}(B,X) \overset{ \phantom{AA} \simeq \phantom{AA} }{\longrightarrow} Hom_{\mathcal{C}}(A,X) \,, \end{displaymath} hence if every morphism $A \overset{f}{\longrightarrow} X$ [[extension|extends]] uniquely along $s$ to $B$: \begin{displaymath} \itexarray{ A &\overset{\phantom{A}f\phantom{A}}{\longrightarrow}& X \\ {}^{\mathllap{s}}\big\downarrow & \nearrow_{\mathrlap{ \exists! }} \\ B } \end{displaymath} We write \begin{equation} \mathcal{C}_S \overset{\phantom{AA}\iota\phantom{AA}}{\hookrightarrow} \mathcal{C} \label{FullSubcategoryOfSLocalObjects}\end{equation} for the [[full subcategory]] of $S$-local objects. \end{defn} \begin{defn} \label{LocalizationAtACollectionOfMorphisms}\hypertarget{LocalizationAtACollectionOfMorphisms}{} \textbf{([[reflective subcategory|reflection]] onto [[full subcategory]] of [[local objects]])} Let $\mathcal{C}$ be a [[category]] and set $S \subset Mor_{\mathcal{C}}$ be a sub-[[class]] of its [[morphisms]]. Then the \emph{reflection onto local $S$-objects} (often called ``localization at the collection $S$'' is, if it exists, a [[left adjoint]] $L$ to the [[full subcategory]]-inclusion of the $S$-[[local objects]] \eqref{FullSubcategoryOfSLocalObjects}: \begin{displaymath} \mathcal{C}_S \underoverset {\underset{\iota}{\hookrightarrow}} {\overset{\phantom{AA}L\phantom{AA}}{\longleftarrow}} {\bot} \mathcal{C} \,. \end{displaymath} \end{defn} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{prop} \label{ReflectiveSubcategoriesAreLocalizations}\hypertarget{ReflectiveSubcategoriesAreLocalizations}{} \textbf{([[reflective subcategories]] are [[localizations]])} Every [[reflective subcategory]]-inclusion \begin{displaymath} \mathcal{C}_{L} \underoverset {\underset{\phantom{AA}\iota \phantom{AA}}{\hookrightarrow}} {\overset{ \phantom{AA} L \phantom{AA} }{\longleftarrow}} {\bot} \mathcal{C} \end{displaymath} is [[generalized the|the]] [[reflective localization]] at the class $W \coloneqq L^{-1}(Isos)$ of morphisms that are sent to isomorphisms by the reflector $L$. \end{prop} \begin{proof} Let $F \;\colon\; \mathcal{C} \to \mathcal{D}$ be a [[functor]] which inverts morphisms that are inverted by $L$. First we need to show that it factors through $L$, up to natural isomorphism. But consider the following [[whiskering]] $F(\eta)$ of the [[adjunction unit]] $\eta$ with $F$: \begin{displaymath} \itexarray{ \mathcal{C} && \overset{F}{\longrightarrow} && \mathcal{D} \\ & {}_{\mathllap{L}}\searrow &\Downarrow& \nearrow_{\mathrlap{D F}} \\ && \mathcal{C}_L } \phantom{AA} \coloneqq \phantom{AA} \itexarray{ \mathcal{C} && \overset{id}{\longrightarrow} && \mathcal{C} & \overset{F}{\longrightarrow}& \mathcal{D} \\ & {}_{\mathllap{L}}\searrow &\Downarrow^{\eta}& \nearrow_{\mathrlap{\iota}} \\ && \mathcal{C}_L } \end{displaymath} By [[idempotent monad|idempotency]], the components of the [[adjunction unit]] $\eta$ are inverted by $L$, and hence by assumption they are also inverted by $F$, so that on the right the [[natural transformation]] $F(\eta)$ is indeed a [[natural isomorphism]]. It remains to show that this factorization is unique up to unique natural isomorphism. So consider any other factorization $D^' F$ via a natural isomorphism $\rho$. Pasting this now with the [[adjunction counit]] \begin{displaymath} \itexarray{ && \mathcal{C} && \overset{F}{\longrightarrow} && \mathcal{D} \\ & {}^{\mathllap{\iota}}\nearrow & {}^{\epsilon}\Downarrow & {}_{\mathllap{L}}\searrow &\Downarrow^{\rho}& \nearrow_{\mathrlap{D^' F}} \\ \mathcal{C}_L && \underset{ id }{\longrightarrow} && \mathcal{C}_L } \end{displaymath} exhibits a natural isomorphism $\epsilon \cdot \rho$ between $D F \simeq D^' F$. Moreover, this is compatible with $F(\eta)$ according to \eqref{CompatibleNaturalIsoForLocalization}, due to the [[triangle identity]]: \begin{displaymath} \itexarray{ \mathcal{C} && \overset{id}{\longrightarrow} && \mathcal{C} && \overset{F}{\longrightarrow} && \mathcal{D} \\ & {}_{\mathllap{id}}\searrow & {}^{\mathllap{\eta}}\Downarrow & {}^{\mathllap{\iota}}\nearrow & {}^{\epsilon}\Downarrow & {}_{\mathllap{L}}\searrow &\Downarrow^{\rho}& \nearrow_{\mathrlap{D^' F}} \\ && \mathcal{C}_L && \underset{ id }{\longrightarrow} && \mathcal{C}_L } \phantom{AAAA} = \phantom{AAAA} \itexarray{ \mathcal{C} && \overset{F}{\longrightarrow} && \mathcal{D} \\ & \searrow &\Downarrow^\rho& \swarrow \\ && \mathcal{C}_L } \end{displaymath} Finally, since $L$ is [[essentially surjective functor]], by [[idempotent monad|idempotency]], it is clear that this is the unique such natural isomorphism. \end{proof} \begin{prop} \label{ReflectiveLocalizationGivenByLocalObjects}\hypertarget{ReflectiveLocalizationGivenByLocalObjects}{} \textbf{([[reflective localization]] [[reflective subcategory|reflects]] onto [[full subcategory]] of [[local objects]])} Let $W \subset \mathcal{C}$ be a [[category with weak equivalences]] (Def. \ref{CategoryWithWeakEquivalences}). If its [[reflective localization]] (Def. \ref{LocalizationOfACategory}) exists \begin{displaymath} \mathcal{C}[W^{-1}] \underoverset {\underset{\phantom{AA} \iota \phantom{AA}}{\hookrightarrow}} {\overset{ \phantom{AA} L \phantom{AA} }{\longleftarrow}} {\bot} \mathcal{C} \end{displaymath} then $\mathcal{C}[W^{-1}] \overset{\iota}{\hookrightarrow} \mathcal{C}$ is [[equivalence of categories|equivalently]] the inclusion of the [[full subcategory]] on the $W$-[[local objects]] (Def. \ref{LocalObjects}), and hence $L$ is equivalently reflection onto the $W$-local objects, according to Def. \ref{LocalizationAtACollectionOfMorphisms}. \end{prop} \begin{proof} We need to show that \begin{enumerate}% \item every $X \in \mathcal{C}[W^{-1}] \overset{\iota}{\hookrightarrow} \mathcal{C}$ is $W$-[[local object|local]], \item every $Y \in \mathcal{C}$ is $W$-[[local object|local]] precisely if it is [[isomorphism|isomorphic]] to an object in $\mathcal{C}[W^{-1}] \overset{\iota}{\hookrightarrow} \mathcal{C}$. \end{enumerate} The first statement follows directly with the [[adjoint functor|adjunction isomorphism]]: \begin{displaymath} Hom_{\mathcal{C}}(w, \iota(X)) \simeq Hom_{\mathcal{C}[W^{-1}]}(L(w), X) \end{displaymath} and the fact that the [[hom-functor]] takes [[isomorphisms]] to [[bijections]]. For the second statement, consider the case that $Y$ is $W$-local. Observe that then $Y$ is also local with respect to the class \begin{displaymath} W_{sat} \;\coloneqq\; L^{-1}(Isos) \end{displaymath} of \emph{all} morphisms that are inverted by $L$ (the ``[[saturated class of morphisms]]''): For consider the [[hom-functor]] $\mathcal{C} \overset{Hom_{\mathcal{C}}(-,Y)}{\longrightarrow} Set^{op}$ to the [[opposite category|opposite]] of the [[category of sets]]. But assumption on $Y$ this takes elements in $W$ to isomorphisms. Hence, by the defining [[universal property]] of the [[localization]]-functor $L$, it factors through $L$, up to [[natural isomorphism]]. Since by [[idempotent monad|idempotency]] the [[adjunction unit]] $\eta_Y$ is in $W_{sat}$, this implies that we have a [[bijection]] of the form \begin{displaymath} Hom_{\mathcal{C}}( \eta_Y, Y ) \;\colon\; Hom_{\mathcal{C}}( \iota L(Y), Y ) \overset{\simeq}{\longrightarrow} Hom_{\mathcal{C}}(Y, Y) \,. \end{displaymath} In particular the [[identity morphism]] $id_Y$ has a [[preimage]] $\eta_Y^{-1}$ under this function, hence a [[left inverse]] to $\eta$: \begin{displaymath} \eta_Y^{-1} \circ \eta_Y \;=\; id_Y \,. \end{displaymath} But by [[2-out-of-3]] this implies that $\eta_Y^{-1} \in W_{sat}$. Since the first item above shows that $\iota L(Y)$ is $W_{sat}$-local, this allows to apply this same kind of argument again, \begin{displaymath} Hom_{\mathcal{C}}( \eta^{-1}_Y, \iota L(Y) ) \;\colon\; Hom_{\mathcal{C}}( Y, \iota L(Y) ) \overset{\simeq}{\longrightarrow} Hom_{\mathcal{C}}( \iota L(Y) , \iota L(Y)) \,, \end{displaymath} to deduce that also $\eta_Y^{-1}$ has a [[left inverse]] $(\eta_Y^{-1})^{-1} \circ \eta_Y^{-1}$. But since a [[left inverse]] that itself has a [[left inverse]] is in fact an [[inverse morphisms]] (\href{retract#LeftInverseWithLeftInverseIsLeftInverse}{this Lemma}), this means that $\eta^{-1}_Y$ is an [[inverse morphism]] to $\eta_Y$, hence that $\eta_Y \;\colon\; Y \to \iota L (Y)$ is an [[isomorphism]] and hence that $Y$ is isomorphic to an object in $\mathcal{C}[W^{-1}] \overset{\iota}{\hookrightarrow} \mathcal{C}$. Conversely, if there is an [[isomorphism]] from $Y$ to a morphism in the image of $\iota$ hence, by the first item, to a $W$-local object, it follows immediatly that also $Y$ is $W$-local, since the [[hom-functor]] takes [[isomorphisms]] to [[bijections]] and since bijections satisfy [[2-out-of-3]]. \end{proof} $\,$ \begin{itemize}% \item For a left exact reflective localization, the class of morphisms that is inverted forms a left-[[multiplicative system]]. For the moment see at \emph{[[geometric embedding]]} for details on this. \end{itemize} \begin{prop} \label{ReflectionOntoLocalObjectsIsLocalizationWithRespectToLeftAdjoints}\hypertarget{ReflectionOntoLocalObjectsIsLocalizationWithRespectToLeftAdjoints}{} \textbf{([[reflective subcategory|reflection]] onto [[local objects]] in [[localization]] with respect to [[left adjoints]])} Let $\mathcal{C}$ be a [[category]] and let $S \subset Mor_{\mathcal{C}}$ be a [[class]] of [[morphisms]] in $\mathcal{C}$. Then the [[reflective subcategory|reflection]] onto the $S$-[[local objects]] (Def. \ref{LocalizationAtACollectionOfMorphisms}) satisfies, if it exists, the [[universal property]] of a [[localization of categories]] (Def. \ref{LocalizationOfACategory}) with respect to \emph{[[left adjoint]]} functors inverting $S$. \end{prop} \begin{proof} Write \begin{displaymath} \mathcal{C}_S \underoverset {\underset{ \phantom{AA}\iota\phantom{AA} }{\hookrightarrow}} {\overset{\phantom{AA}L\phantom{AA}}{\longleftarrow}} {\bot} \mathcal{C} \end{displaymath} for the [[reflective subcategory]]-inclusion of the $S$-[[local objects]]. Say that a [[morphism]] $f$ in $\mathcal{C}$ is an \emph{$S$-[[local morphism]]} if for every $S$-[[local object]] $A \in \mathcal{C}$ the [[hom-functor]] from $f$ to $A$ yields a [[bijection]] $Hom_{\mathcal{C}}(f,A)$. Notice that, by the [[Yoneda embedding]] for $\mathcal{C}_S$, the $S$-[[local morphisms]] are precisely the morphisms that are taken to isomorphisms by the reflector $L$. Now let \begin{displaymath} (F \dashv G) \;\colon\; \mathcal{C} \underoverset {\underset{G}{\longleftarrow}} {\overset{ \phantom{AA} F \phantom{AA} }{\longrightarrow}} {\bot} \mathcal{D} \end{displaymath} be a pair of [[adjoint functors]], such that the [[left adjoint]] $F$ inverts the morphisms in $S$. By the adjunction hom-isomorphism it follows that $G$ takes values in $S$-[[local objects]]. This in turn implies, now via the [[Yoneda embedding]] for $\mathcal{D}$, that $F$ inverts all $S$-[[local morphisms]], and hence all morphisms that are inverted by $L$. Thus the essentially unique factorization of $F$ through $L$ now follows by Prop. \ref{ReflectiveSubcategoriesAreLocalizations}. \end{proof} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[reflective subcategory]], [[coreflective subcategory]] \item [[reflective factorization system]] \item [[Bousfield localization]], [[Quillen reflection]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The concept of reflective localization was originally highlighted in \begin{itemize}% \item [[Pierre Gabriel]], [[Michel Zisman]], \emph{[[Calculus of fractions and homotopy theory]]}, Springer 1967 (\href{https://www.math.rochester.edu/people/faculty/doug/otherpapers/GZ.pdf}{pdf}) \end{itemize} A formalization in [[homotopy type theory]] of reflection onto local objects is discussed in \begin{itemize}% \item [[Egbert Rijke]], [[Michael Shulman]], [[Bas Spitters]], \emph{Modalities in homotopy type theory} (\href{https://arxiv.org/abs/1706.07526}{arXiv:1706.07526}) \end{itemize} [[!redirects reflective localizations]] \end{document}