\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{reflective subcategory} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{notions_of_subcategory}{}\paragraph*{{Notions of subcategory}}\label{notions_of_subcategory} [[!include notions of subcategory]] \hypertarget{modalities_closure_and_reflection}{}\paragraph*{{Modalities, Closure and Reflection}}\label{modalities_closure_and_reflection} [[!include modalities - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{Idea}{Idea}\dotfill \pageref*{Idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{characterizations}{Characterizations}\dotfill \pageref*{characterizations} \linebreak \noindent\hyperlink{special_cases}{Special cases}\dotfill \pageref*{special_cases} \linebreak \noindent\hyperlink{ExactReflectiveSubcategories}{Exact reflective subcategories}\dotfill \pageref*{ExactReflectiveSubcategories} \linebreak \noindent\hyperlink{complete_reflective_subcategories}{Complete reflective subcategories}\dotfill \pageref*{complete_reflective_subcategories} \linebreak \noindent\hyperlink{AccessibleReflectiveSubcategories}{Accessible reflective subcategories}\dotfill \pageref*{AccessibleReflectiveSubcategories} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{AsEilenbergMooreCategory}{As Eilenberg-Moore category of the idempotent monad}\dotfill \pageref*{AsEilenbergMooreCategory} \linebreak \noindent\hyperlink{reflective_subcategories_of_locally_presentable_categories}{Reflective subcategories of locally presentable categories}\dotfill \pageref*{reflective_subcategories_of_locally_presentable_categories} \linebreak \noindent\hyperlink{ReflectiveSubcategoriesOfCartesianClosedCategotries}{Reflective subcategories of cartesian closed categories}\dotfill \pageref*{ReflectiveSubcategoriesOfCartesianClosedCategotries} \linebreak \noindent\hyperlink{reflective_and_coreflective_subcategories}{Reflective and coreflective subcategories}\dotfill \pageref*{reflective_and_coreflective_subcategories} \linebreak \noindent\hyperlink{property_vs_structure}{Property vs structure}\dotfill \pageref*{property_vs_structure} \linebreak \noindent\hyperlink{Examples}{Examples}\dotfill \pageref*{Examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{Idea}{}\subsection*{{Idea}}\label{Idea} A \emph{reflective subcategory} is a [[full subcategory]] \begin{displaymath} C \hookrightarrow D \end{displaymath} such that [[objects]] $d$ and [[morphisms]] $f \colon d \to d'$ in $D$ have ``reflections'' $T d$ and $T f \colon T d \to T d'$ in $C$. Every object in $D$ looks at its own reflection via a morphism $d \to Td$ and the reflection of an object $c \in C$ is equipped with an [[isomorphism]] $T c \cong c$. A canonical example is the inclusion \begin{displaymath} \mathrm{Ab} \hookrightarrow \mathrm{Grp} \end{displaymath} of the [[category of abelian groups]] into the [[category of groups]], whose reflector is the operation of \emph{[[abelianization]]}. A useful property of reflective subcategories is that the inclusion $C \hookrightarrow D$ [[created limit|creates all limits]] of $D$ and $C$ has all [[colimits]] which $D$ admits. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{}\hypertarget{}{} A [[full subcategory]] $i : C \hookrightarrow D$ is \textbf{reflective} if the inclusion [[functor]] $i$ has a [[left adjoint]] $T$: \begin{displaymath} (T \dashv i) : C \stackrel{\stackrel{T}{\leftarrow}}{\hookrightarrow} D \,. \end{displaymath} \end{defn} The left adjoint is sometimes called the \textbf{reflector}, and a functor which is a reflector (or has a fully faithful right adjoint, which is the same up to equivalence) is called a \textbf{reflection}. Of course, there are dual notions of \textbf{[[coreflective subcategory]]}, \textbf{coreflector}, and \textbf{coreflection}. \begin{remark} \label{NonFullReflections}\hypertarget{NonFullReflections}{} A few sources (such as [[Categories Work]]) do not require a reflective subcategory to be full. However, in light of the fact that non-full subcategories are not [[principle of equivalence|invariant under equivalence]], consideration of non-full reflective subcategories seems of limited usefulness. The general consensus among category theorists nowadays seems to be that ``reflective subcategory'' implies fullness. Examples for non-full subcategories and their behaviour can be found in a \href{http://www.tac.mta.ca/tac/volumes/30/41/30-41.pdf}{TAC paper} by Ad\'a{}mek and Rosick\'y{}. \end{remark} \begin{remark} \label{}\hypertarget{}{} The components of the [[unit of an adjunction|unit]] \begin{displaymath} \itexarray{ & \nearrow &\Downarrow^{\eta}& \searrow^{Id} \\ D &\stackrel{T}{\to}& C &\hookrightarrow & D } \end{displaymath} of this [[adjunction]] ``reflect'' each object $d \in D$ into its image $T d$ in the reflective subcategory \begin{displaymath} \eta_d : d \to T d \,. \end{displaymath} \end{remark} This reflection is sometimes called a \emph{[[localization]]} (due to \href{reflective+localization#ReflectiveSubcategoriesAreLocalizations}{this Prop.} at \emph{[[reflective localization]]}), although sometimes this term is reserved for the case when the functor $T$ is [[exact functor|left exact]]. \begin{defn} \label{}\hypertarget{}{} If the reflector $T$ is [[faithful functor|faithful]], the reflection is called a \textbf{[[completion]]}. \end{defn} \hypertarget{characterizations}{}\subsection*{{Characterizations}}\label{characterizations} \begin{prop} \label{CharacterizationByLocalization}\hypertarget{CharacterizationByLocalization}{} \textbf{(equivalent characterizations)} Given any pair of [[adjoint functors]] \begin{displaymath} (Q^*\dashv Q_*) \;:\; B \underoverset {\underset{Q_*}{\longrightarrow}} {\overset{Q^*}{\longleftarrow}} {\bot} A \end{displaymath} the following are equivalent: \begin{enumerate}% \item The [[right adjoint]] $Q_*$ is [[full and faithful functor|fully faithful]]. (In this case $B$ is equivalent to its [[essential image]] in $A$ under $Q_*$, a full [[reflective subcategory]] of $A$.) \item The [[counit of an adjunction|counit]] $\varepsilon : Q^* Q_*\to 1_B$ of the [[adjunction]] is a [[natural isomorphism]] of functors. \item The [[monad]] $(Q_* Q^*,Q_*\varepsilon Q^*,\eta)$ associated with the adjunction is [[idempotent monad|idempotent]], the right adjoint $Q_*$ is [[conservative functor|conservative]], and the left adjoint $Q^*$ is [[essentially surjective functor|essentially surjective on objects]]. \item If $S$ is the set of morphisms $s$ in $A$ such that $Q^*(s)$ is an [[isomorphism]] in $B$, then $Q^* \colon A \to B$ realizes $B$ as the (nonstrict) [[localization]] of $A$ with respect to the class $S$. \end{enumerate} \end{prop} This is originally due to (\hyperlink{GabrielZisman67}{Gabriel-Zisman 67, prop. 1.3, page 7}). \begin{proof} The equivalence of 1) and 2) is \href{adjoint+functor#FullyFaithfulAndInvertibleAdjoints}{this prop.}. The equivalence of 1) and 3) is \href{idempotent+monad#EquivalentConditions}{this Prop.}. For the last item see at \emph{[[reflective localization]]}. \end{proof} This is a well-known set of equivalences concerning [[idempotent monads]]. The essential point is that a reflective subcategory $i: B \to A$ is [[monadic functor|monadic]], i.e., realizes $B$ as the category of [[algebra over a monad|algebras for the monad]] $i r$ on $A$, where $r: A \to B$ is the reflector. See also the related discussion at [[reflective sub-(infinity,1)-category]]. \hypertarget{special_cases}{}\subsection*{{Special cases}}\label{special_cases} \hypertarget{ExactReflectiveSubcategories}{}\subsubsection*{{Exact reflective subcategories}}\label{ExactReflectiveSubcategories} If the reflector (which as a [[left adjoint]] always preserves all [[colimit]]s) in addition preserves [[finite limits]], then the embedding is called \emph{exact}. If the categories are [[topos]]es then such embeddings are called [[geometric embedding]]s. In particular, every [[sheaf topos]] is an exact reflective subcategory of a [[category of presheaves]] \begin{displaymath} Sh(C) \stackrel{\overset{sheafify}{\leftarrow}}{\hookrightarrow} PSh(C) \,. \end{displaymath} The reflector in that case is the [[sheafification]] functor. \begin{theorem} \label{}\hypertarget{}{} If $X$ is a reflective subcategory of a [[cartesian closed category]], then it is an [[exponential ideal]] if and only if its [[reflector]] $D\to C$ preserves [[finite product]]. In particular, $C$ is then also cartesian closed. \end{theorem} This appears for instance as (\hyperlink{Johnstone}{Johnstone, A4.3.1}). See also at \emph{[[reflective subuniverse]]}. So in particular if $C$ is an exact reflective subcategory of a cartesian closed category $D$, then $C$ is an [[exponential ideal]] of $D$. See [[Day's reflection theorem]] for a more general statement and proof. \hypertarget{complete_reflective_subcategories}{}\subsubsection*{{Complete reflective subcategories}}\label{complete_reflective_subcategories} When the unit of the reflector is a [[monomorphism]], a reflective category is often thought of as a full subcategory of \emph{complete} objects in some sense; the reflector takes each object in the ambient category to its completion. Such reflective subcategories are sometimes called \emph{mono-reflective}. One similarly has \emph{epi-reflective} (when the unit is an [[epimorphism]]) and \emph{bi-reflective} (when the unit is a [[bimorphism]]). In the last case, note that if the unit is an \emph{iso}morphism, then the inclusion functor is an [[equivalence of categories]], so nontrivial bireflective subcategories can occur only in non-[[balanced categories]]. Also note that `bireflective' here does \emph{not} mean reflective and [[coreflective subcategory|coreflective]]. One sees this term often in discussions of [[concrete categories]] (such as [[topological categories]]) where really something stronger holds: that the reflector lies over the [[identity functor]] on [[Set]]. In this case, one can say that we have a subcategory that is \textbf{reflective over $Set$}. \hypertarget{AccessibleReflectiveSubcategories}{}\subsubsection*{{Accessible reflective subcategories}}\label{AccessibleReflectiveSubcategories} \begin{defn} \label{AccessibleReflection}\hypertarget{AccessibleReflection}{} A reflection \begin{displaymath} \mathcal{C} \stackrel{\overset{L}{\leftarrow}}{\underset{R}{\hookrightarrow}} \mathcal{D} \end{displaymath} is called \textbf{accessible} if $\mathcal{D}$ is an [[accessible category]] and the reflector $R\circ L \colon \mathcal{D} \to \mathcal{D}$ is an [[accessible functor]]. \end{defn} \begin{prop} \label{}\hypertarget{}{} A reflective subcategory $\mathcal{C} \hookrightarrow \mathcal{D}$ of an [[accessible category]] is accessible, def. \ref{AccessibleReflection}, precisely if $\mathcal{C}$ is an [[accessible category]]. \end{prop} In this explicit form this appears as (\hyperlink{Lurie}{Lurie, prop. 5.5.1.2}). From (\hyperlink{AdamekRosicky}{Adamek-Rosick\'y{}}) the ``only if''-direction follows immediately from 2.53 there (saying that an accessibly embedded subcategory of an accessible category is accessible iff it is cone-reflective), while the ``if''-direction follows immediately from 2.23 (saying any left or right adjoint between accessible categories is accessible). \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{general}{}\subsubsection*{{General}}\label{general} A reflective subcategory is always closed under [[limit|limits]] which exist in the ambient category (because the full inclusion is monadic, as noted above), and inherits [[colimit|colimits]] from the larger category by application of the reflector \hyperlink{Riehl}{Riehl, Prop 4.5.15}. In particular, if the ambient category is complete and cocomplete then so is the reflective subcategory. A morphism in a reflective subcategory is monic iff it is monic in the ambient category. A reflective subcategory of a well-powered category is well-powered. \hypertarget{AsEilenbergMooreCategory}{}\subsubsection*{{As Eilenberg-Moore category of the idempotent monad}}\label{AsEilenbergMooreCategory} \begin{prop} \label{}\hypertarget{}{} Any reflective subcategory is recovered as the [[Eilenberg-Moore category]] of [[algebra over a monad|algebras]] over its associated [[idempotent monad]]. \end{prop} See for instance (\hyperlink{Borceux}{Borceux, vol 2, cor. 4.2.4}) and see at \emph{\href{idempotent+monad#AlgebrasForAnIdempotentMonad}{idempotent monad -- Properties -- Algebras for an idempotent monad and localization}}. \hypertarget{reflective_subcategories_of_locally_presentable_categories}{}\subsubsection*{{Reflective subcategories of locally presentable categories}}\label{reflective_subcategories_of_locally_presentable_categories} Both the weak and strong versions of [[Vopěnka's principle]] are equivalent to fairly simple statements concerning reflective subcategories of locally presentable categories: \begin{theorem} \label{}\hypertarget{}{} The weak [[Vopěnka's principle]] is equivalent to the statement: For $C$ a [[locally presentable category]], every [[full subcategory]] $D \hookrightarrow C$ which is closed under [[limit]]s is a reflective subcategory. \end{theorem} This is \hyperlink{AdamekRosicky}{AdamekRosicky, theorem 6.28} \begin{theorem} \label{}\hypertarget{}{} The strong [[Vopěnka's principle]] is equivalent to: For $C$ a [[locally presentable category]], every [[full subcategory]] $D \hookrightarrow C$ which is closed under [[limit]]s is a reflective subcategory; further on, $D$ is then also locally presentable. \end{theorem} (Remark after corollary 6.24 in \hyperlink{AdamekRosicky}{Adamek-Rosicky book}). \hypertarget{ReflectiveSubcategoriesOfCartesianClosedCategotries}{}\subsubsection*{{Reflective subcategories of cartesian closed categories}}\label{ReflectiveSubcategoriesOfCartesianClosedCategotries} In showing that a given category is [[cartesian closed category|cartesian closed]], the following theorem is often useful (cf. A4.3.1 in the [[Elephant]]): \begin{theorem} \label{}\hypertarget{}{} If $C$ is cartesian closed, and $D\subseteq C$ is a [[reflective subcategory]], then the reflector $L\colon C\to D$ preserves finite [[products]] if and only if $D$ is an [[exponential ideal]] (i.e. $Y\in D$ implies $Y^X\in D$ for any $X\in C$). In particular, if $L$ preserves finite products, then $D$ is cartesian closed. \end{theorem} \hypertarget{reflective_and_coreflective_subcategories}{}\subsubsection*{{Reflective and coreflective subcategories}}\label{reflective_and_coreflective_subcategories} \begin{theorem} \label{}\hypertarget{}{} A subcategory of a [[category of presheaves]] $[A^{op}, Set]$ which is both reflective and coreflective is itself a category of presheaves $[B^{op}, Set]$, and the inclusion is induced by a functor $A \to B$. \end{theorem} This is shown in (\hyperlink{BashirVelebil}{BashirVelebil}). \hypertarget{property_vs_structure}{}\subsubsection*{{Property vs structure}}\label{property_vs_structure} Whenever $C$ is a full subcategory of $D$, we can say that objects of $C$ are objects of $D$ with some extra [[property, structure, stuff|property]]. But if $C$ is reflective in $D$, then we can turn this around and (by thinking of the left adjoint as a [[forgetful functor]]) think of objects of $D$ as objects of $C$ with (if we're lucky) some [[extra structure]] or (in any case) some [[extra stuff]]. This can always be made to work by brute force, but sometimes there is something insightful about it. For example, a metric space is a complete metric space equipped with a dense subset. Or, an [[integral domain]] is a [[field]] equipped with numerator and denominator functions. \hypertarget{Examples}{}\subsection*{{Examples}}\label{Examples} \begin{example} \label{}\hypertarget{}{} Complete [[metric spaces]] are mono-reflective in metric spaces; the reflector is called \emph{completion}. \end{example} \begin{example} \label{}\hypertarget{}{} The [[category of sheaves]] on a [[site]] $S$ is a reflective subcategory of the [[category of presheaves]] on $S$; the reflector is called \emph{[[sheafification]]}. In fact, categories of sheaves are precisely those accessible reflective subcategories, def. \ref{AccessibleReflection}, of presheaf categories for which the reflector is left [[exact functor|exact]]. This makes the inclusion functor precisely a [[geometric inclusion]] of [[toposes]]. \end{example} \begin{example} \label{}\hypertarget{}{} A category of [[concrete presheaves]] inside a [[category of presheaves]] on a [[concrete site]] is a reflective subcategory. \end{example} \begin{example} \label{}\hypertarget{}{} In a [[recollement]] situation, we have several reflectors and coreflectors. We have a reflective and coreflective subcategory $i_*: A' \hookrightarrow A$ with reflector $i^*$ and coreflector $i^!$. The functor $j^*$ is both a reflector for the reflective subcategory $j_*: A'' \hookrightarrow A$, and a coreflector for the coreflective subcategory $j_!: A'' \hookrightarrow A$. \end{example} \begin{example} \label{TheReflectiveSubcategoriesOfSet}\hypertarget{TheReflectiveSubcategoriesOfSet}{} Assuming classical logic, the category [[Set]] has exactly three reflective (and [[replete subcategory|replete]]) subcategories: the full subcategory containing all [[singleton set|singleton sets]]; the full subcategory containing all [[subsingletons]]; and $Set$ itself. In [[constructive mathematics]], there are potentially more reflective subcategories, for instance the subcategory of $j$-sheaves for any [[Lawvere-Tierney topology|Lawvere?Tierney topology]] on $Set$. \end{example} \begin{example} \label{AffineVarieties}\hypertarget{AffineVarieties}{} The category of [[affine schemes]] is a reflective subcategory of the category of [[schemes]], with the reflector given by $X \mapsto Spec \Gamma(X,\mathcal{O}_X)$. The generalization of this example to [[homotopy theory]] is discussed at \emph{[[function algebras on infinity-stacks]]}. The analogue in [[noncommutative algebraic geometry]] is in (\hyperlink{Rosenberg98}{Rosenberg 98, prop 4.4.3}). \end{example} \begin{example} \label{NonUnitalRings}\hypertarget{NonUnitalRings}{} The non-full inclusion of unital [[rings]] into non-unital rings has a left adjoint (with monic units), whose reflector formally adjoins an [[identity element]]. However, we do not call it a reflective subcategory, because the ``inclusion'' is not full; see remark \ref{NonFullReflections}. \end{example} \begin{remark} \label{RemarkOnNonUnitalRings}\hypertarget{RemarkOnNonUnitalRings}{} Notice that for $R \in Ring$ a ring with unit, its reflection $L R$ in the above example is not in general isomorphic to $R$, but is much larger. But an object in a reflective subcategory is necessarily isomorphic to its image under the reflector only if the reflective subcategory is full. While the inclusion $\mathbf{Ring} \hookrightarrow \mathbf{Ring}$` does have a [[left adjoint]] (as any [[forgetful functor]] between varieties of algebras, by the [[adjoint lifting theorem]]), this inclusion is not full (an arrow in $\mathbf{Ring}$' need not preserve the identity). \end{remark} \begin{example} \label{CategoryOfCategories}\hypertarget{CategoryOfCategories}{} The subcategory \begin{displaymath} Cat \hookrightarrow sSet \end{displaymath} of the [[category of categories]] into the [[sSet|category of simplical sets]] is a reflective subcategory \hyperlink{Riehl}{Riehl, example 4.5.14 (vi)}. The reflection is given by the [[homotopy category|homotopy category functor]]. This implies that [[Cat]] is complete and cocomplete because it inherits all limits and colimits from [[sSet]]. \end{example} \begin{example} \label{ModelsOfALawvereTheory}\hypertarget{ModelsOfALawvereTheory}{} For any [[Lawvere theory]] $T$, its category of models is the category \begin{displaymath} Prod(T, Set) \end{displaymath} of product preserving functors into $Set$ and natural transformations between them. The inclusion \begin{displaymath} Prod(T, Set) \hookrightarrow [T, Set] \end{displaymath} is a reflective subcategory \hyperlink{Buckley}{Buckley, theorem 5.2.1}. Therefore, because $[T,Set]$ is complete and cocomplete (limits and colimits are computed pointwise), so is $Prod(T, Set)$. This implies that many familar algebraic categories such as [[Grp]], [[Mon]], [[Ring]], etc. are complete and cocomplete as a special case. \end{example} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[localization]], [[locally presentable category]] \item [[reflective localization]] \item [[Quillen reflection]], [[left Bousfield localization]] \item [[reflective sub-(infinity,1)-category]] \item [[adjoint cylinder]], describing the situation when the reflector has a further left adjoint \item [[sheaf toposes are equivalently the left exact reflective subcategories of presheaf toposes]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Pierre Gabriel]], [[Michel Zisman]], \emph{[[Calculus of fractions and homotopy theory]]}, Springer 1967 (\href{https://www.math.rochester.edu/people/faculty/doug/otherpapers/GZ.pdf}{pdf}) \item [[Francis Borceux]], \emph{[[Handbook of Categorical Algebra]]}, vol.1, p. 196. \item [[Jiri Adamek|Jiri Adamek]], [[Jiří Rosický]], \emph{[[Locally presentable and accessible categories]]} London Mathematical Society Lecture Note Series 189 \item Springer eom: \href{http://eom.springer.de/r/r080550.htm}{reflective subcategory} \item cf. the notion of $Q^\circ$-category in the entry [[Q-category]] \item [[Emily Riehl]], \emph{[[Category Theory in Context]], p. 142, Courier Dover Publications 2017 (\href{http://www.math.jhu.edu/~eriehl/context.pdf}{pdf})} \item Mitchell Buckley, \emph{Lawvere Theories, 2008 \href{http://web.science.mq.edu.au/~street/MitchB.pdf}{pdf}} \end{itemize} The relation of exponential ideals to [[reflective subcategories]] is discussed in section A4.3.1 of \begin{itemize}% \item [[Peter Johnstone]], \emph{[[Sketches of an Elephant]]} \end{itemize} Reflective and coreflective subcategories of presheaf categories are discussed in \begin{itemize}% \item R. Bashir, J. Velebil, \emph{Simultaneously reflective and coreflective subcategories of presheaves}, Theory and Applications of Categories, Vol 10. No. 16. (2002) (\href{http://www.emis.de/journals/TAC/volumes/10/16/10-16.pdf}{pdf}). \end{itemize} Related discussion of [[reflective sub-(∞,1)-categories]] is in \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Higher Topos Theory]]} \end{itemize} The example of affine schemes in [[noncommutative algebraic geometry]] is in \begin{itemize}% \item [[Alexander Rosenberg]], \emph{Noncommutative schemes}, Comp. Math. 112, 93--125 (1998) \end{itemize} [[!redirects reflector]] [[!redirects reflectors]] [[!redirects reflective subcategories]] [[!redirects reflexive subcategory]] \end{document}