\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{reflexive coequalizer} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{limits_and_colimits}{}\paragraph*{{Limits and colimits}}\label{limits_and_colimits} [[!include infinity-limits - contents]] \hypertarget{reflexive_coequalisers}{}\section*{{Reflexive coequalisers}}\label{reflexive_coequalisers} \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{applications}{Applications}\dotfill \pageref*{applications} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} \begin{defn} \label{}\hypertarget{}{} A \textbf{reflexive pair} is a [[parallel pair]] $f,g\colon A\rightrightarrows B$ having a common [[section]], i.e. a map $s\colon B\to A$ such that $f \circ s = g \circ s = 1_B$. A \textbf{reflexive coequalizer} is a [[coequalizer]] of a reflexive pair. A category \textbf{has reflexive coequalizers} if it has coequalizers of all reflexive pairs. Dually, a reflexive coequalizer in the [[opposite category]] $C^{op}$ is called a \textbf{coreflexive equalizer} in $C$. \end{defn} \begin{remark} \label{}\hypertarget{}{} Reflexive coequalizers should not be confused with [[split coequalizers]], a distinct concept. \end{remark} \begin{example} \label{}\hypertarget{}{} Any [[congruence]] is a reflexive pair, so in particular any [[quotient object|quotient]] of a congruence is a reflexive coequalizer. \end{example} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{theorem} \label{LintonTheorem}\hypertarget{LintonTheorem}{} If $T$ is a [[monad]] on a [[cocomplete category]] $C$, then the category $C^T$ of [[Eilenberg-Moore category|Eilenberg Moore algebras]] is cocomplete if and only if it has reflexive coequalizers. This is the case particularly if $T$ preserves reflexive coequalizers. \end{theorem} This is due to (\hyperlink{Linton}{Linton}). \begin{proof} Suppose $C^T$ has reflexive coequalizers. Then $C^T$ certainly has coproducts, because if $A_i$ is a collection of $T$-algebras, then we can form the coequalizer in $C^T$ of the reflexive pair \begin{displaymath} \sum_i F U F U A_i \stackrel{\overset{\sum_i \varepsilon F U A_i}{\to}}{\underset{\sum_i F U \varepsilon A_i}{\to}} \sum_i F U A_i \end{displaymath} using the fact that the displayed coproducts exist because, for example, \begin{displaymath} \sum_i F U A_i \cong F(\sum_i U A_i) \end{displaymath} since the left adjoint $F$ preserves coproducts, assumed to exist in $C$. That this reflexive coequalizer is the coproduct $\sum_i A_i$ in $C^T$ is routine. Finally, a category with coproducts and reflexive coequalizers is cocomplete. It suffices that general coequalizers exist, but it is easily seen that if \begin{displaymath} f, g \colon A \stackrel{\to}{\to} B \end{displaymath} is a parallel pair, then the coequalizer of the reflexive pair \begin{displaymath} A + B \stackrel{\overset{(f, 1_B)}{\to}}{\underset{(g, 1_B)}{\to}} B \end{displaymath} (note both maps are retracts of the inclusion $B \to A + B$) also exists, and gives the coequalizer of the first pair. This completes the proof. \end{proof} \begin{prop} \label{PreservingReflectiveCoequalizersInTwoVariables}\hypertarget{PreservingReflectiveCoequalizersInTwoVariables}{} If $F\colon C\times D\to E$ is a [[functor]] of two variables which preserves reflexive coequalizers in each variable separately (that is, $F(c,-)$ and $F(-,d)$ preserve reflexive coequalizers for all $c\in C$ and $d\in D$), then $F$ preserves reflexive coequalizers in both variables together. \end{prop} \begin{remark} \label{}\hypertarget{}{} This is emphatically \emph{not} the case for arbitrary coequalizers. \end{remark} \begin{proof} \textbf{of proposition \ref{PreservingReflectiveCoequalizersInTwoVariables}} Suppose given two reflexive coequalizers \begin{displaymath} c_0 \stackrel{\to}{\to} c_1 \to c_2 \end{displaymath} \begin{displaymath} \, \end{displaymath} \begin{displaymath} d_0 \stackrel{\to}{\to} d_1 \to d_2 \end{displaymath} and let $c_{i j}$ denote $F(c_i, d_j)$ so that we have a diagram \begin{displaymath} \itexarray{ c_{0 0} & \stackrel{\to}{\to} & c_{0 1} & \to & c_{0 2} \\ \downarrow \downarrow & & \downarrow \downarrow & & \downarrow \downarrow \\ c_{1 0} & \stackrel{\to}{\to} & c_{1 1} & \to & c_{1 2} \\ \downarrow & & \downarrow & & \downarrow \\ c_{2 0} & \stackrel{\to}{\to} & c_{2 1} & \to & c_{2 2} } \end{displaymath} in which all rows and columns are reflexive coequalizers (using preservation of reflexive coequalizers in separate variables), and all squares are \emph{serially} commutative. According to \hyperlink{BarrWells}{Toposes, Triples, Theories}, lemma 4.2 page 248, the diagonal is also a (reflexive) coequalizer, as claimed. (See also the lemma on page 1 of Johnstone's \hyperlink{Johnstone}{Topos Theory}.) \end{proof} Proposition \ref{PreservingReflectiveCoequalizersInTwoVariables} is particularly interesting when $F$ is the [[tensor product]] of a cocomplete [[closed monoidal category]] $C$. In this case it implies that the [[free monoid monad]] on such a category preserves reflexive coequalizers, and thus (by \hyperlink{LintonTheorem}{Linton's theorem}) the category of [[monoid objects]] in $C$ is cocomplete. \begin{prop} \label{}\hypertarget{}{} Reflexive coequalizers in [[Set]] commute with finite [[products]]: the $n$-fold product functors $Set^n \stackrel{\prod}{\to} Set$ preserve reflexive coequalizers. \end{prop} \begin{proof} This follows from prop. \ref{PreservingReflectiveCoequalizersInTwoVariables} as well as from the fact that the [[diagram]] category $\{ 0 \stackrel{\overset{d_0}{\to}}{\stackrel{\overset{s_0}{\leftarrow}}{\underset{d_1}{\to}}} 1\}$ with $d_0 \circ s_0 = d_1 \circ s_0 = id$ is a [[sifted category]]. \end{proof} Of course, the diagonal functor $\Delta: Set \to Set^n$, being [[left adjoint]] to the product functor, preserves reflexive coequalizers; therefore the composite \begin{displaymath} Set \stackrel{\prod \Delta}{\to} Set: x \mapsto \hom(n, x) \end{displaymath} also preserves reflexive coequalizers. This has a further consequence which is technically very convenient: \begin{theorem} \label{}\hypertarget{}{} If $T$ is a [[finitary monad]] on $Set$, then $T$ preserves reflexive coequalizers. \end{theorem} \begin{proof} We have a [[coend]] formula for $T$: \begin{displaymath} T(-) \cong \int^{n \in Fin} T(n) \times \hom(n, -) \end{displaymath} and since this is a colimit of functors $\hom(n, -)$ which preserve reflexive coequalizers, $T$ must also preserve reflexive coequalizers. \end{proof} Since finitary monads $T$ preserve reflexive coequalizers, it follows that the monadic functor $U \colon Set^T \to Set$ reflects reflexive coequalizers, and so since $Set$ has reflexive coequalizers, $Set^T$ must as well. Therefore, by proposition \ref{LintonTheorem}, $Set^T$ is cocomplete. This is actually true for infinitary monads $T$ on $Set$ as well, at least if we assume the axiom of choice (see \href{http://ncatlab.org/nlab/show/colimits+in+categories+of+algebras#reflexive_coequalizers_and_cocompleteness_16}{here} for a proof), but the argument just given is a choice-free proof for the case of finitary monads. \hypertarget{applications}{}\subsection*{{Applications}}\label{applications} \begin{itemize}% \item Reflexive coequalizers figure in the [[crude monadicity theorem]]. \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Fred Linton]], \emph{Coequalizers in categories of algebras}, Seminar on Triples and Categorical Homology Theory, Lecture Notes in Mathematics Vol. 80 (1969), 75-90. \end{itemize} \begin{itemize}% \item [[Michael Barr]] and [[Charles Wells]], \emph{Toposes, Theories, and Triples}, Reprints in Theory and Applications of Categories (2005), 1-289. (\href{http://www.case.edu/artsci/math/wells/pub/pdf/ttt.pdf}{online pdf}) \end{itemize} \begin{itemize}% \item [[Peter Johnstone]], Topos Theory, London Mathematical Society Monographs no. 10, Academic Press, 1977. \end{itemize} [[!redirects reflexive coequalizer]] [[!redirects reflexive coequalizers]] [[!redirects reflexive coequaliser]] [[!redirects reflexive coequalisers]] [[!redirects coreflexive equalizer]] [[!redirects coreflexive equalizers]] [[!redirects coreflexive equaliser]] [[!redirects coreflexive equalisers]] [[!redirects reflexive equalizer]] [[!redirects reflexive equalizers]] [[!redirects reflexive equaliser]] [[!redirects reflexive equalisers]] \end{document}