\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{reflexive object} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{in_a_closed_symmetric_monoidal_category}{In a closed (symmetric) monoidal category}\dotfill \pageref*{in_a_closed_symmetric_monoidal_category} \linebreak \noindent\hyperlink{in_a_closed_monoidal_2category}{In a closed monoidal 2-category}\dotfill \pageref*{in_a_closed_monoidal_2category} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{terminal_object}{Terminal object}\dotfill \pageref*{terminal_object} \linebreak \noindent\hyperlink{scotts__construction}{Scott's $D_\infty$ construction}\dotfill \pageref*{scotts__construction} \linebreak \noindent\hyperlink{enumeration_operator_model}{Enumeration operator model}\dotfill \pageref*{enumeration_operator_model} \linebreak \noindent\hyperlink{scotts_representation_theorem}{Scott's representation theorem}\dotfill \pageref*{scotts_representation_theorem} \linebreak \noindent\hyperlink{higherorder_abstract_syntax}{Higher-order abstract syntax}\dotfill \pageref*{higherorder_abstract_syntax} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{reflexive object} is a model of the pure (untyped) [[lambda calculus]] validating the $\beta$ law, and sometimes also the $\eta$ law. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A \textbf{reflexive object} in a [[cartesian closed category]] is an object $U$ equipped with a pair of maps \begin{displaymath} \itexarray{U & \overset{app}{\underset{lam}{\rightleftarrows}} & U^U} \end{displaymath} such that $app \circ lam = 1$. In other words, a reflexive object is an object $U$ together with data $U^U \lhd U$ exhibiting $U^U$ as a [[retract]] of $U$. A reflexive object is said to be \textbf{extensional} (or ``strict'') when also $lam \circ app = 1$, so that there is an isomorphism $U^U \cong U$. Viewed as a model of lambda calculus, the equation $app \circ lam = 1$ of a reflexive object represents $\beta$-equality $(\lambda x.t)(u) = t[u/x]$, while the equation $lam \circ app = 1$ of an extensional reflexive object represents $\eta$-equality $\lambda x.t(x) = t$. \hypertarget{in_a_closed_symmetric_monoidal_category}{}\subsubsection*{{In a closed (symmetric) monoidal category}}\label{in_a_closed_symmetric_monoidal_category} The definition has a straightforward generalization to any [[symmetric monoidal closed category]] (i.e., not necessarily [[cartesian monoidal category|cartesian monoidal]]), where we just replace the exponential object $U^U$ by the [[internal hom]] $[U,U]$. Indeed, the definition also makes sense in any left-closed or right-closed monoidal category. A reflexive object in a symmetric monoidal closed category provides a model of [[linear lambda calculus]]. \hypertarget{in_a_closed_monoidal_2category}{}\subsubsection*{{In a closed monoidal 2-category}}\label{in_a_closed_monoidal_2category} The definition of reflexive object also has a natural generalization to any closed monoidal [[2-category]] (or cartesian closed 2-category), where the retraction should be replaced by an [[adjunction]] $app \dashv lam : [U,U] \to U$. Then the [[counit]] of the adjunction $app \circ lam \Rightarrow 1_{[U,U]}$ models [[beta-reduction]] $(\lambda x.t)(u) \to t[u/x]$, while the [[unit]] $1_U \Rightarrow lam \circ app$ models [[eta-expansion]] $t \to \lambda x.t(x)$. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{terminal_object}{}\subsubsection*{{Terminal object}}\label{terminal_object} The [[terminal object]] of a ccc provides a degenerate example of a (extensional) reflexive object, and for cardinality reasons, this is the only reflexive object in [[Set]]. \hypertarget{scotts__construction}{}\subsubsection*{{Scott's $D_\infty$ construction}}\label{scotts__construction} The first non-degenerate model of untyped lambda calculus was described by [[Dana Scott]] (see \hyperlink{Scott70}{Scott (1970)} and \hyperlink{Scott72}{Scott (1972)}), who solved the cardinality issue by replacing sets with [[algebraic lattices]], and arbitrary set-theoretic functions by [[Scott topology|Scott-continuous]] functions. The so-called ``$D_\infty$'' model is built by a limit construction, starting from $D_0 = D$ an arbitrary algebraic lattice, and taking $D_{n+1} = D_n \to D_n$. \hypertarget{enumeration_operator_model}{}\subsubsection*{{Enumeration operator model}}\label{enumeration_operator_model} Scott later gave a more concrete model of lambda calculus in \hyperlink{Scott76}{Scott (1976)}, defining a reflexive object with carrier the lattice $P\omega$ of all [[subsets]] of the non-negative integers, and with the maps $app$ and $lam$ (there called ``fun'' and ``graph'') defined as follows: \begin{displaymath} app(u)(x) = \{m \mid \exists e_n \subseteq x. (n,m) \in u\} \end{displaymath} \begin{displaymath} lam(f) = \{(n,m) \mid m \in f(e_n)\} \end{displaymath} Here $e_n$ stands for the set whose elements are the exponents in the binary expansion of $n$ (thus $e_n$ is the $n$th subset in the standard enumeration of finite subsets of $\omega$), while ``$(n,m)$'' stands for the standard enumeration of pairs of integers \begin{displaymath} (n,m) = \frac{1}{2}(n+m)(n+m+1)+m \end{displaymath} Note that the enumeration operator model is not ``extensional'' in the sense that it only validates $\eta$-conversion as an inclusion $u \subseteq \ell(a(u))$, which is not an equality in general. \hypertarget{scotts_representation_theorem}{}\subsubsection*{{Scott's representation theorem}}\label{scotts_representation_theorem} \hyperlink{Scott80}{Scott (1980)} proved a sort of representation theorem for pure lambda calculus, showing that \emph{any} ``type-free theory'' (a.k.a., [[lambda theory]]) can be realized as a reflexive object. He began by constructing a category whose objects are the closed lambda terms $A$ such that one can prove $A = \lambda x.A(A(x))$, and whose morphisms $f : A \to B$ are (equivalence classes of) closed terms $f$ such that one can prove $f = \lambda x.B(f(A(x)))$ (cf. [[Karoubi envelope]]), with identity and composition defined by \begin{displaymath} 1_A = A \qquad f \circ g = \lambda x.f(g(x)) \end{displaymath} This category is cartesian closed, where products and exponentials are defined (on objects) by \begin{displaymath} A \times B = \lambda u\lambda z.z(A(u(\lambda x\lambda y.x)))(B(u(\lambda x\lambda y.y))) \qquad A \to B = \lambda f.B \circ f \circ A \end{displaymath} Now, the identity term $U = \lambda x.x$ lives inside this category since obviously $U = U\circ U$, and moreover, every object $A$ is a retract of $U$, since $A : A \to U$ and $A : U \to A$ and $A \circ A = A = 1_A$. Thus, $U$ equipped with its retraction from $U \to U$ is a reflexive object. A more abstract analysis of Scott's representation theorem appears in \hyperlink{Hyland13}{Hyland (2013)}. \hypertarget{higherorder_abstract_syntax}{}\subsubsection*{{Higher-order abstract syntax}}\label{higherorder_abstract_syntax} Another way of looking at the \emph{free} cartesian closed category containing a reflexive object is as a representation of pure lambda terms (up to $\beta$-equality) in the style of so-called [[higher-order abstract syntax]]. The operation $app : U \to U^U$ is the [[currying|curried]] form of application, while the operation $lam : U^U \to U$ represents lambda abstraction. The [[global elements]] of $U$ can be interpreted as closed lambda terms, and more generally, morphisms $U^n \to U$ can be interpreted as terms with $n$ free variables. \hypertarget{references}{}\subsection*{{References}}\label{references} Dana Scott's original work on lattice models of the lambda calculus can be found in: \begin{itemize}% \item Dana Scott. Outline of a Mathematical Theory of Computation. In \emph{4th Annual Princeton Conference on Information Sciences and Systems}, pages 169-176, 1970. (\href{https://ropas.snu.ac.kr/~kwang/520/readings/sco70.pdf}{pdf}) \item Dana Scott. Continuous Lattices. \emph{Toposes, Algebraic Geometry and Logic} (ed.: E. Lawvere), pages 97-136, 1972. (\href{https://www.cs.ox.ac.uk/files/3229/PRG07.pdf}{pdf}) \item Dana Scott. Data types as lattices. \emph{SIAM Journal of Computing}, 5(3):522--587, September 1976. (\href{https://www.cs.ox.ac.uk/files/3287/PRG05.pdf}{pdf}) \end{itemize} Scott made the underlying categorical structure explicit in a later paper, where he introduced the definition of a reflexive object in a ccc, and proved a representation theorem for theories of pure lambda calculus: \begin{itemize}% \item Dana Scott. Relating theories of the $\lambda$-calculus. In \emph{To H.B. Curry: Essays on Combinatory Logic, Lambda-Calculus and Formalism} (eds. Hindley and Seldin), Academic Press, 403--450, 1980. \end{itemize} For a modern analysis of Scott's representation theorem, see: \begin{itemize}% \item [[Martin Hyland]]. Classical lambda calculus in modern dress. To appear in \emph{Mathematical Structures in Computer Science}, 2013. \href{http://arxiv.org/abs/1211.5762}{arxiv} \item [[Martin Hyland]], \emph{Towards a Notion of Lambda Monoid} , Electronic Notes in Theoretical Computer Science \textbf{303} (2014) pp.59-77. \end{itemize} Bicategorical and monoidal generalizations of the notion of reflexive object are discussed in: \begin{itemize}% \item [[R. A. G. Seely]]. Modelling Computations : a 2-categorical Framework. LICS 1987. (\href{http://www.math.mcgill.ca/rags/WkAdj/LICS.pdf}{pdf}) \item [[Bart Jacobs]]. Semantics of lambda-I and of other substructure lambda calculi. M. Bezem and J.F. Groote (eds.) \emph{Typed Lambda Calculi and Applications}, Springer LNCS 664, 1993, p. 195-208. \item [[Noam Zeilberger]]. Linear lambda terms as invariants of rooted trivalent maps. 31 Jan 2016. (\href{http://arxiv.org/abs/1512.06751}{arXiv}) \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[lambda calculus]] \item [[domain theory]] \item [[lambda theory]] \end{itemize} \end{document}