\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{regular cardinal} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{finite}{Finite regular cardinals?}\dotfill \pageref*{finite} \linebreak \noindent\hyperlink{in_weak_foundations}{In weak foundations}\dotfill \pageref*{in_weak_foundations} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{regular_cardinals}{Regular cardinals}\dotfill \pageref*{regular_cardinals} \linebreak \noindent\hyperlink{singular_cardinals}{Singular cardinals}\dotfill \pageref*{singular_cardinals} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A regular cardinal is is a [[cardinal number]] that is `closed under union'. The [[category]] of [[sets]] bounded by a regular cardinal has several nice properties, making it a [[universe]] that is handy for some purposes but falls short of being a [[Grothendieck universe]]. Unlike Grothendieck universes (which are based on [[inaccessible cardinals]] rather than regular cardinals), it is easy to prove that (even [[uncountable set|uncountable]]) regular cardinals exist. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} An [[infinite set|infinite]] [[cardinal]] $\kappa$ is a \textbf{regular cardinal} if it satisfies the following equivalent properties: \begin{itemize}% \item no set (in a [[material set theory]]) of cardinality $\kappa$ is the [[union]] of fewer than $\kappa$ sets of cardinality less than $\kappa$. \item no set (in a [[structural set theory]]) of cardinality $\kappa$ is the [[disjoint union]] of fewer than $\kappa$ sets of cardinality less than $\kappa$. \item given a function $P \to X$ (regarded as a [[family of sets]] $\{P_x\}_{x\in X}$) such that ${|X|} \lt \kappa$ and ${|P_x|} \lt \kappa$ for all $x \in X$, then ${|P|} \lt \kappa$. \item the [[category]] $\Set_{\lt\kappa}$ of sets of cardinality $\lt\kappa$ has all [[colimits]] (or just all [[coproducts]]) of size $\lt\kappa$. \item the [[cofinality]] of $\kappa$ is equal to $\kappa$. \end{itemize} A cardinal that is not regular is called \textbf{singular}. \hypertarget{finite}{}\subsubsection*{{Finite regular cardinals?}}\label{finite} Traditionally, one requires regular cardinals to be infinite. This clause may be removed, in which case $0$, $1$, and $2$ are all regular cardinals. Other modifications of the definition which are equivalent for infinite cardinals may include some of $0$, $1$, and $2$ but not all. For instance, if we regard an indexed [[disjoint union]] $\sum_{i\in\lambda} \alpha_i$ as a binary operation taking as input $\lambda$ and a $\lambda$-indexed family $\alpha$, then closure under this binary operation as in the above definition also entails closure under the ternary version $\sum_{i\in\lambda} \sum_{j\in \mu_i} \alpha_{i,j}$, and so on. The unary version is simply the identity operation, whereas the nullary version will always output the [[singleton set]] $1$. (This can be seen by thinking in terms of trees of uniform finite height, or remembering that a [[dependent sum]] includes a binary [[cartesian product]] as a special case, so a nullary dependent sum should at least include a nullary product.) Thus, from this perspective, $2$ is a regular cardinal, but $0$ and $1$ are not. In applications for which this perspective is the relevant one, such as [[familial regularity and exactness]], one may more precisely be interested in an [[arity class]] rather than a regular cardinal. We may rule out all three finite regular cardinals by additionally generalising from indexed disjoint unions to finitary disjoint unions. Then in terms of $Set_{\lt\kappa}$, the (potential) conditions on a (possibly finite) regular cardinal are as follows: \begin{enumerate}% \item $Set_{\lt\kappa}$ is closed under iterated disjoint unions ($\biguplus_i A_i$). \item $Set_{\lt\kappa}$ is closed under the nullary iterated disjoint union (the [[singleton]]). \item $Set_{\lt\kappa}$ is closed under binary disjoint unions ($A \uplus B$). \item $Set_{\lt\kappa}$ is closed under the nullary disjoint union (the [[empty set]]). \end{enumerate} These are all variations on the theme of closure under disjoint unions. Clauses (2--4) hold of all infinite cardinals, while clauses (2\&3) together force $\kappa$ to be greater than any finite cardinal. However, if we require only clauses (1\&2), then $2$ is a regular cardinal. \hypertarget{in_weak_foundations}{}\subsubsection*{{In weak foundations}}\label{in_weak_foundations} Thinking of a regular cardinal \emph{as} a cardinal number makes the most sense using the [[axiom of choice]]. Otherwise, we probably want to think of it as a \emph{collection} of cardinals, or equivalently think of it as the category $Set_{\lt\kappa}$. From this perspective, a regular cardinal is a [[full subcategory]] of $Set$ that is closed under taking [[quotient objects]] and satisfies the condition on $Set_{\lt\kappa}$ above. We can then recover $\kappa$ as the smallest cardinal number greater than every cardinal in $Set_{\lt\kappa}$, if we accept the axiom of choice. Note that if we require only conditions (1\&2) on $Set_{\lt\kappa}$, then (even classically), $\{1\}$ is an acceptable (and finite) regular collection of cardinals, even though it is not actually of the form $Set_{\lt\kappa}$ for any cardinal number $\kappa$. In the absence of the axiom of choice, it is not clear that there exist arbitrarily large regular cardinals. Thus in weaker foundations, regular cardinals (or ``regular sets of cardinals'') can be regarded as a [[large cardinal]] property. At least if ``regular cardinal'' has its classical meaning of a particular ordinal, then the statement that \emph{there exist arbitrarily large regular cardinals} is independent of [[ZF]]; in fact it is consistent with ZF that all uncountable cardinals are singular. A foundational axiom which is related to the existence of regular cardinals (but considers them as sets with various closure properties, rather than cardinal numbers) is the [[regular extension axiom]]. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{regular_cardinals}{}\subsubsection*{{Regular cardinals}}\label{regular_cardinals} \begin{itemize}% \item The first (infinite) regular cardinal is $\aleph_0 = {|\mathbb{N}|}$, because a set with cardinality less than $\aleph_0$ is a [[finite set]], and a finite union of finite sets is still a finite set. \item The [[successor]] of any infinite cardinal, such as $\aleph_0$, is a regular cardinal. (This requires the [[axiom of choice]].) In the case of $\aleph_0$, this means that a countable union of countable sets is countable. Note that this implies that there exist arbitarily large regular cardinals: for any cardinal $\lambda$ there is a greater regular cardinal, namely $\lambda^+$. \end{itemize} \hypertarget{singular_cardinals}{}\subsubsection*{{Singular cardinals}}\label{singular_cardinals} \begin{itemize}% \item $\aleph_\omega = \bigcup_{n\in \mathbb{N}} \aleph_n$ is singular, more or less by definition, since $\aleph_n\lt\aleph_\omega$ and ${|\mathbb{N}|} = \aleph_0 \lt\aleph_\omega$. \item More generally, any limit cardinal that can be ``written down by hand'' should be singular, since if it were regular then it would be [[weakly inaccessible cardinal|weakly inaccessible]], and the existence of weakly inaccessible cardinals cannot be proven in [[ZFC]] (if $ZFC$ is consistent). We say `should' rather than `must', since there are exceptions, but they are sort of cheating: one (definable with Choice) is `the smallest limit cardinal that is regular if and only if some weakly innaccessible cardinal exists'. \item Assuming the consistency (with [[ZFC]]) of `there is a [[proper class]] of [[strongly compact cardinal|strongly compact cardinals]]', it is consistent with $ZF$ that every uncountable cardinal is singular (and in fact every infinite well-orderable cardinal has [[cofinality]] $\aleph_0$), a result due to [[Moti Gitik]]. (Of course this conclusion is inconsistent with $ZFC$, in which many uncountable cardinals, starting with $\aleph_1$, are regular.) \end{itemize} [[!redirects regular cardinal]] [[!redirects regular cardinals]] [[!redirects regular cardinal number]] [[!redirects regular cardinal numbers]] [[!redirects regular collection of cardinal numbers]] [[!redirects regular collections of cardinal numbers]] [[!redirects regular set of cardinal numbers]] [[!redirects regular sets of cardinal numbers]] [[!redirects regular class of cardinal numbers]] [[!redirects regular classes of cardinal numbers]] [[!redirects singular cardinal]] [[!redirects singular cardinals]] [[!redirects singular cardinal number]] [[!redirects singular cardinal numbers]] [[!redirects singular collection of cardinal numbers]] [[!redirects singular collections of cardinal numbers]] [[!redirects singular set of cardinal numbers]] [[!redirects singular sets of cardinal numbers]] [[!redirects singular class of cardinal numbers]] [[!redirects singular classes of cardinal numbers]] \end{document}