\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{regular monomorphism} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{higher_category_theory}{}\paragraph*{{Higher category theory}}\label{higher_category_theory} [[!include higher category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{relation_to_effective_monomorphisms}{Relation to effective monomorphisms}\dotfill \pageref*{relation_to_effective_monomorphisms} \linebreak \noindent\hyperlink{Examples}{Examples}\dotfill \pageref*{Examples} \linebreak \noindent\hyperlink{Infty1Version}{In an $(\infty,1)$-category}\dotfill \pageref*{Infty1Version} \linebreak \noindent\hyperlink{related_pages}{Related pages}\dotfill \pageref*{related_pages} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A [[monomorphism]] is \emph{regular} if it behaves like an [[embedding]]. \begin{itemize}% \item [[effective epimorphism]] $\Rightarrow$ [[regular epimorphism]] $\Leftrightarrow$ [[covering]] \item [[effective monomorphism]] $\Rightarrow$ [[regular monomorphism]] $\Leftrightarrow$ [[embedding]] . \end{itemize} The universal factorization through an embedding is the [[image]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{}\hypertarget{}{} A \textbf{regular monomorphism} is a [[morphism]] $f : c \to d$ in some [[category]] which occurs as the [[equalizer]] of \emph{some} [[pair of parallel morphisms]] $d \stackrel{\to}{\to} e$, i.e. for which a [[limit]] [[diagram]] of the form \begin{displaymath} c \stackrel{f}{\to} d \stackrel{\longrightarrow}{\longrightarrow} e \end{displaymath} exists. \end{defn} From the defining [[universal property]] of the [[limit]] it follows directly that a regular monomorphism is in particular a [[monomorphism]]. The dual concept is that of a [[regular epimorphism]]. $\backslash$begin\{rmk\} Beware that (\hyperlink{CassidyHebertKelly}{CassidyHebertKelly}) use `regular monomorphism' in a more general way: for them, a regular monomorphism is by definition the joint equalizer of an arbitrary family of parallel pairs of morphisms with common domain. This concept is sometimes called [[strict monomorphism]], dual to the more commonly used [[strict epimorphism]]. $\backslash$end\{rmk\} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{relation_to_effective_monomorphisms}{}\subsubsection*{{Relation to effective monomorphisms}}\label{relation_to_effective_monomorphisms} \begin{defn} \label{EffectiveMonomorphism}\hypertarget{EffectiveMonomorphism}{} A monomorphism $i: A \to B$ is an [[effective monomorphism]] if it is the [[equalizer]] of its [[cokernel pair]]: if the [[pushout]] \begin{displaymath} \itexarray{ A & \stackrel{i}{\to} & B \\ i \downarrow & & \downarrow i_1 \\ B & \underset{i_2}{\to} & B +_A B } \end{displaymath} exists and $i$ is the equalizer of the pair of coprojections $i_1, i_2: B \stackrel{\to}{\to} B +_A B$. Obviously effective monomorphisms are regular. \end{defn} \begin{prop} \label{RegEquEff}\hypertarget{RegEquEff}{} In a [[category]] with [[equalizers]] and [[cokernel pairs]], the class of regular monomorphism coincides with that of [[effective monomorphism]] (def. \ref{EffectiveMonomorphism}). \end{prop} \begin{proof} It is clear that every effective monomorphism is regular, we need to show the converse. Suppose $i \colon A \to B$ is the equalizer of a pair of morphisms $f, g: B \to C$, and with notation as in def. \ref{EffectiveMonomorphism}, let $j: E \to B$ be the equalizer of the pair of coprojections $i_1, i_2$. Since $f \circ i = g \circ i$, there exists a unique map $\phi: B +_A B \to C$ such that $\phi \circ i_1 = f$ and $\phi \circ i_2 = g$. Then, since \begin{displaymath} f j = \phi i_1 j = \phi i_2 j = g j \end{displaymath} and since $i: A \to B$ is the equalizer of the pair $(f, g)$, there is a unique map $k: E \to A$ such that $j = i k$. Since $i_1 i = i_2 i$, there is a unique map $l: A \to E$ such that $i = j l$. The maps $k$, $l$ are mutually inverse. \end{proof} \hypertarget{Examples}{}\subsection*{{Examples}}\label{Examples} \begin{itemize}% \item In [[Set]], or more generally in any [[pretopos]], every [[monomorphism]] is regular. \item Similarly, in [[Ab]], and more generally any [[abelian category]], every monomorphism is regular. \end{itemize} \begin{prop} \label{RegularMonomorphismsOfTopologicalSpaces}\hypertarget{RegularMonomorphismsOfTopologicalSpaces}{} \textbf{(regular monomorphisms of [[topological spaces]])} In the [[category]] [[Top]] of [[topological space]], \begin{enumerate}% \item the [[monomorphisms]] are the those [[continuous functions]] which are [[injective functions]]; \item the regular monomorphisms are the [[topological embeddings]] (that is, the injective continuous functions whose sources have the [[induced topology|topologies induced]] from their targets); these are in fact all of the [[extremal monomorphisms]]. \end{enumerate} \end{prop} \begin{proof} Regarding the first statement: an injective continuous function $f \colon X \to Y$ clearly has the cancellation property that defines monomorphisms: for parallel continuous functions $g_1,g_2 \colon Z \to X$: if $f \circ g_1 = f \circ g_1$, then $g_1 = g_2$ because continuous functions are equal precisely if their underlying functions of sets are equal. Conversely, if $f$ has the cacellation property, then testing on points $g_1, g_2 \colon \ast \to X$ gives that $f$ is injective. Regarding the second statement: from the construction of [[equalizers]] in [[Top]] (\href{Top#EqualizerInTop}{this example}) we have that these are topological subspace inclusions. Conversely, let $i \colon X \to Y$ be a [[topological subspace embedding]]. We need to show that this is the equalizer of some pair of parallel morphisms. To that end, form the [[cokernel pair]] $(i_1, i_2)$ by taking the [[pushout]] of $i$ against itself (in the category of sets, and using the [[quotient topology]] on a [[disjoint union space]]). By prop. \ref{RegEquEff}, the equalizer of that pair is the set-theoretic equalizer of that pair of functions endowed with the [[subspace topology]]. Since monomorphisms in [[Set]] are regular, we get the function $i$ back and (again by \href{Top#EqualizerInTop}{this example}) it is equipped with the subspace topology. \end{proof} \begin{prop} \label{reg}\hypertarget{reg}{} In [[Grp]], the monics are (up to [[isomorphism]]) the inclusions of [[subgroup]]s, and every monomorphism is regular. \end{prop} In contrast, the [[normal monomorphisms]] (where one of the morphisms $d \to e$ is required to be the [[zero morphism]]) are the inclusions of [[normal subgroups]]. \begin{proof} The elementary proof we give follows \href{http://katmat.math.uni-bremen.de/acc/acc.pdf#page=129}{exercise 7H} of (\hyperlink{AdamekHerrlichStrecker}{AdamekHerrlichStrecker}). It is however nonconstructive (because it contains if-then-else lines); for a constructive proof, see \href{/nlab/show/Grp#eq}{here}. Let $K \hookrightarrow H$ be a subgroup. We need to define another group $G$ and group homomorphisms $f_1, f_2 : H \to G$ such that \begin{displaymath} K = \{h \in H | f_1(h) = f_2(h)\} \,. \end{displaymath} To that end, let \begin{displaymath} X := H/K \coprod \{\hat K\} := \{ h K | h \in H \} \coprod \{\hat K\} \end{displaymath} be the set of [[coset]]s together with one more element $\hat K$. Let then \begin{displaymath} G = Aut_{Set}(X) \end{displaymath} be the [[permutation group]] on $X$. Define $\rho \in G$ to be the permutation that exchanges the coset $e K$ with the extra element $\hat K$ and is the identity on all other elements. Finally define group homomorphism $f_1,f_2 : H \to G$ by \begin{displaymath} f_1(h) : x \mapsto \left\{ \itexarray{ h h' K & if x = h' K \\ \hat K & if x = \hat K } \right. \end{displaymath} and \begin{displaymath} f_2(h) = \rho \circ f_1(h) \circ \rho^{-1} \,. \end{displaymath} It is clear that these maps are indeed group homomorphisms. So for $h \in H$ we have that \begin{displaymath} f_1(h) : \hat K \mapsto \hat K \,, \end{displaymath} and \begin{displaymath} f_1(h) : e K \mapsto h K \end{displaymath} and \begin{displaymath} f_2(h) : \hat K \mapsto e K \mapsto h K \mapsto \left\{ \itexarray{ \hat K & if h \in K \\ h K & otherwise } \right. \,. \end{displaymath} \begin{displaymath} f_2(h) : e K \mapsto \hat K \mapsto \hat K \mapsto e K \,. \end{displaymath} So we have $f_1(h) = f_2(h)$ precisely if $h \in K$. \end{proof} \hypertarget{Infty1Version}{}\subsection*{{In an $(\infty,1)$-category}}\label{Infty1Version} In the context of [[higher category theory]] the ordinary [[limit]] diagram $c \stackrel{f}{\to} d \stackrel{\to}{\to} e$ may be thought of as the beginning of a [[homotopy limit]] diagram over a [[cosimplicial object|cosimplicial]] diagram \begin{displaymath} c \stackrel{f}{\to} d_0 \stackrel{\to}{\to} d_1 \stackrel{\to}{\stackrel{\to}{\to}} d_2 \cdots \,. \end{displaymath} Accordingly, it is not unreasonable to define a [[regular monomorphism in an (∞,1)-category]], to be a morphism which is the [[limit in a quasi-category]] of a cosimplicial diagram. In practice this is of particular relevance for the $\infty$-version of [[regular epimorphism]]s: with the analogous definition as described there, a morphism $f : c \to d$ is a [[regular epimorphism]] in an [[(∞,1)-category]] $C$ if for all objects $e \in C$ the induced morphism $f^* : C(d,e) \to C(c,e)$ is a [[regular monomorphism]] in [[∞Grpd]] (for instance [[model structure on simplicial sets|modeled]] by a [[homotopy limit]] over a cosimplicial diagram in [[SSet]]). \textbf{Warning.} The same warning as at [[regular epimorphism]] applies: with this definition of regular monomorphism in an [[(∞,1)-category]] these may fail to satisfy various definitions of plain monomorphisms that one might think of. \hypertarget{related_pages}{}\subsection*{{Related pages}}\label{related_pages} \begin{itemize}% \item [[regular epimorphism]] (containing more results which of course have duals that could be added here) \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Jiri Adamek]], [[Horst Herrlich]], and [[George Strecker]], \emph{Abstract and concrete categories: the joy of cats}. (\href{http://katmat.math.uni-bremen.de/acc/acc.pdf}{pdf}) \item [[C. Cassidy]], [[M. Hébert]], and [[Max Kelly]] \emph{Reflective subcategories, localizations and factorizationa systems}. Journal of the Australian Mathematical Society (Series A) 38.03 (1985): 287-329. \end{itemize} [[!redirects regular monomorphism]] [[!redirects regular monomorphisms]] [[!redirects regular mono]] [[!redirects regular monos]] [[!redirects regular monic]] [[!redirects regular monics]] [[!redirects regular subobject]] [[!redirects regular subobjects]] \end{document}