\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{regular space} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topology}{}\paragraph*{{Topology}}\label{topology} [[!include topology - contents]] \hypertarget{regular_spaces}{}\section*{{Regular spaces}}\label{regular_spaces} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{variations}{Variations}\dotfill \pageref*{variations} \linebreak \noindent\hyperlink{Examples}{Examples}\dotfill \pageref*{Examples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{regular space} is a [[topological space]] (or variation, such as a [[locale]]) that has, in a certain sense, enough regular [[open subsets]]. The condition of regularity is one the [[separation axioms]] satsified by every [[metric space]] (in this case, by every pseudometric space). [[!include main separation axioms -- table]] \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} Fix a [[topological space]] $X$. The classical definition is this: that if a point and a closed set are disjoint, then they are separated by neighbourhoods. In detail, this means: \begin{defn} \label{classical}\hypertarget{classical}{} Given any point $a$ and closed set $F$, if $a \notin F$, then there exist a neighbourhood $V$ of $a$ and a neighbourhood $G$ of $F$ such that $V \cap G$ is empty. \end{defn} In many contexts, it is more helpful to change perspective, from a closed set that $a$ does \emph{not} belong to, to an open set that $a$ \emph{does} belong to. Then the definition reads: \begin{defn} \label{constructive}\hypertarget{constructive}{} Given any point $a$ and neighbourhood $U$ of $a$, there exist a neighbourhood $V$ of $a$ and an open set $G$ such that $V \cap G = \empty$ but $U \cup G = X$. \end{defn} You can think of $V$ as being half the size of $U$, with $G$ the exterior of $V$. (In a [[metric space]], or even in a [[uniform space]], this can be made into a proof.) If we apply the regularity condition twice, then we get what at first might appear to be a stronger result: \begin{defn} \label{closed}\hypertarget{closed}{} Given any point $a$ and neighbourhood $U$ of $a$, there exist a neighbourhood $W$ of $a$ and an open set $G$ such that $Cl(W) \cap Cl(G) = \empty$ but $U \cup G = X$ (where $Cl$ indicates topological closure). \end{defn} \begin{proof} Find $V$ and $G$ as above. Now apply the regularity axiom to $a$ and the interior $Int(V)$ of $V$ to get $W$ (and $H$). \end{proof} In terms of the classical language of separation axioms, this says that $a$ and $F$ are separated by \emph{closed} neighbourhoods. Sometimes one includes in the definition that a regular space must be $T_0$: \begin{udefn} A space is $T_0$ if, given any two points, if each neighbourhood of either is a neighbourhood of the other, then they are equal. \end{udefn} Other authors use the weaker definition above but call a regular $T_0$ space a \textbf{$T_3$ space}, but then that term is also used for a (merely) regular space. An unambiguous term for the weaker condition is an \textbf{$R_2$ space}, but hardly anybody uses that. We have \begin{utheorem} Every $T_3$ space is [[Hausdorff space|Hausdorff]]. \end{utheorem} \begin{proof} Suppose every neighbourhood of $a$ meets every neighbourhood of $b$; by $T_0$ (and symmetry), it's enough to show that each neighbourhood $U$ of $a$ is a neighbourhood of $b$. Use regularity to get $V$ and $G$. Then $G$ cannot be a neighbourhood of $b$, so $U$ is. \end{proof} Since every Hausdorff space is $T_0$, a less ambiguous term for a $T_3$ space is a \textbf{regular Hausdorff space}. It is possible to describe the regularity condition fairly simply entirely in terms of the algebra of open sets. First notice the relevance above of the condition that $Cl(V) \subset U$; we write $V \subset\!\!\!\!\subset U$ in that case and say that $V$ is \textbf{well inside} $U$. We now rewrite this condition in terms of open sets and regularity in terms of this condition. \begin{defn} \label{locale}\hypertarget{locale}{} Given sets $U, V$, then $V \subset\!\!\!\!\subset U$ iff there exists an open set $G$ such that $V \cap G = \empty$ but $U \cup G = X$. Then $X$ is regular iff, given any open set $U$, $U$ is the union of all of the open sets that are well inside $U$. \end{defn} This definition is suitable for [[locales]]. As the definition of a Hausdroff locale is rather more complicated, one often speaks of compact regular locales where classically one would have spoken of [[compact Hausdorff space|compact Hausdorff spaces]]. (The theorem that compact regular $T_0$ spaces and compact Hausdorff spaces are the same works also for locales, and every locale is $T_0$, so compact regular locales and compact Hausdorff locales are the same.) \begin{defn} \label{closed_basis}\hypertarget{closed_basis}{} Given a neighbourhood $U$ of $x$, there is a closed neighbourhood of $x$ that is contained in $U$. Equivalently, $x$ has an open neighbourhood well inside $U$. In other words, the closed neighbourhoods of $x$ form a local base (a base of the [[neighbourhood filter]]) at $x$. \end{defn} In [[constructive mathematics]], Definition \ref{constructive} is good; then everything else follows without change, except for the equivalence with \ref{classical}. Even then, the classical separation axioms hold for a regular space; they just are not sufficient. \hypertarget{variations}{}\subsection*{{Variations}}\label{variations} The condition that a space $X$ be regular is related to the \textbf{regular open sets} in $X$, that is those open sets $G$ such that $G$ is the interior of its own closure. (In the [[Heyting algebra]] of open subsets of $X$, this means precisely that $G$ is its own [[double negation]]; this immediately generalises the concept to locales.) \begin{cor} \label{regular_basis}\hypertarget{regular_basis}{} For any regular space $X$, the regular open sets form a basis for the topology of $X$. \end{cor} \begin{proof} For any closed neighbourhood $V$ of $x \in X$, the interior $Int(V)$ is a regular open neighbourhood of $x$. Using Definition \ref{closed_basis} finishes the proof. \end{proof} Corollary \ref{regular_basis} suggests a slightly weaker condition, that of a \textbf{semiregular space}: \begin{udefn} The regular open sets form a basis for the topology of $X$. \end{udefn} As we've seen above, a regular $T_0$ space ($T_3$) is [[Hausdorff space|Hausdorff]] ($T_2$); we can also remove the $T_0$ condition from the latter to get $R_1$: \begin{udefn} \textbf{(of $R_1$)} Given points $a$ and $b$, if every neighbourhood of $a$ meets every neighbourhood of $b$, then every neighbourhood of $a$ is a neighbourhood of $b$. \end{udefn} It is immediate that $T_2 \equiv R_1 \wedge T_0$, and the proof above that $T_3 \Rightarrow T_2$ becomes a proof that $R_2 \Rightarrow R_1$; that is, every regular space is $R_1$. An $R_1$ space is also called \emph{preregular} (in \emph{[[HAF]]}) or \emph{reciprocal} (in [[convergence space]] theory). A bit stronger than regularity is \emph{complete regularity}; a bit stronger than $T_3$ is $T_{3\frac{1}{2}}$. The difference here is that for a [[completely regular space]] we require that $a$ and $F$ be separated \emph{by a function}, that is by a continuous real-valued function. See [[Tychonoff space]] for more. This strengthening implies (Tychonoff Embedding Theorem) that the space embeds into a product of [[metric space]]s. For locales, there is also a weaker notion called [[weakly regular locale|weak regularity]], which uses the notion of [[fiberwise closed sublocale]] instead of ordinary closed [[sublocales]]. \hypertarget{Examples}{}\subsection*{{Examples}}\label{Examples} \begin{example} \label{}\hypertarget{}{} Let $(X,d)$ be a [[metric space]] regarded as a [[topological space]] via its [[metric topology]]. Then this is a [[normal Hausdorff space]], in particular hence a regular Hausdorff space. \end{example} \begin{proof} We need to show is that given two [[disjoint subsets|disjoint]] [[closed subsets]] $C_1, C_2 \subset X$ then their exists [[disjoint subset|disjoint]] [[open neighbourhoods]] $U_{C_1} \subset C_1$ and $U_{C_2} \supset C_2$. Consider the function \begin{displaymath} d(S,-) \colon X \to \mathbb{R} \end{displaymath} which computes [[distances]] from a subset $S \subset X$, by forming the [[infimum]] of the distances to all its points: \begin{displaymath} d(S,x) \coloneqq inf\left\{ d(s,x) \vert s \in S \right\} \,. \end{displaymath} Then the [[unions]] of [[open balls]] \begin{displaymath} U_{C_1} \coloneqq \underset{x_1 \in C_1}{\cup} B^\circ_{x_1}( d(C_2,x_1) ) \end{displaymath} and \begin{displaymath} U_{C_2} \coloneqq \underset{x_2 \in C_2}{\cup} B^\circ_{x_2}( d(C_1,x_2) ) \,. \end{displaymath} have the required properties. \end{proof} \begin{example} \label{}\hypertarget{}{} The [[real numbers]] equipped with their [[K-topology]] $\mathbb{R}_K$ are a [[Hausdorff topological space]] which is not a [[regular Hausdorff space]] (hence in particular not a [[normal Hausdorff space]]). \end{example} \begin{proof} By construction the K-topology is [[finer topology|finer]] than the usual [[Euclidean space|euclidean]] [[metric topology]]. Since the latter is Hausdorff, so is $\mathbb{R}_K$. It remains to see that $\mathbb{R}_K$ contains a point and a [[disjoint subset|disjoint]] closed subset such that they do not have disjoint [[open neighbourhoods]]. But this is the case essentially by construction: Observe that \begin{displaymath} \mathbb{R} \backslash K \;=\; (-\infty,-1/2) \cup \left( (-1,1) \backslash K \right) \cup (1/2, \infty) \end{displaymath} is an open subset in $\mathbb{R}_K$, whence \begin{displaymath} K = \mathbb{R} \backslash ( \mathbb{R} \backslash K ) \end{displaymath} is a [[closed subset]] of $\mathbb{R}_K$. But every [[open neighbourhood]] of $\{0\}$ contains at least $(-\epsilon, \epsilon) \backslash K$ for some positive real number $\epsilon$. There exists then $n \in \mathbb{N}_{\geq 0}$ with $1/n \lt \epsilon$ and $1/n \in K$. An open neighbourhood of $K$ needs to contain an open interval around $1/n$, and hence will have non-trivial intersection with $(-\epsilon, \epsilon)$. Therefore $\{0\}$ and $K$ may not be separated by disjoint open neighbourhoods, and so $\mathbb{R}_K$ is not normal. \end{proof} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{itemize}% \item [[second-countable regular spaces are paracompact]] \item [[paracompact Hausdorff spaces are normal|paracompact Hausdorff spaces are regular]] \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} A [[uniform space]] is automatically regular and even completely regular, at least in [[classical mathematics]]. In [[constructive mathematics]] this may not be true, and there is an intermediate notion of interest called [[uniform regularity]]. Every regular space comes with a naturally defined (point-point) [[apartness relation]]: we say $x # y$ if there is an open set containing $x$ but not $y$. This can be defined for any topological space and is obviously irreflexive, but in a regular space it is symmetric and a [[comparison]], hence an apartness. For symmetry, if $x\in U$ and $y\notin U$, let $V$ be an open set containing $x$ and $G$ an open set such that $V\cap G = \emptyset$ and $G\cup U = X$; then $y\in G$ (since $y\notin U$) while $x\notin G$ (since $x\in V$). With the same notation, to prove comparison, for any $z$ we have either $z\in G$, in which case $z # x$, or $z\in U$, in which case $z # y$. Note that this argument is valid constructively; indeed, classically, the much weaker $R_0$ [[separation axiom]] is enough to make this relation symmetric, and it is a comparison on any topological space whatsoever. Note that if a space is [[Hausdorff space|localically strongly Hausdorff]] (a weaker condition than regularity), then it has an apartness relation defined by $x \# y$ if there are disjoint open sets containing $x$ and $y$. If $X$ is regular, then this coincides with the above-defined apartness. [[!redirects completely regular]] [[!redirects completely regular space]] [[!redirects regular space]] [[!redirects regular spaces]] [[!redirects R2 space]] [[!redirects R2 spaces]] [[!redirects T3 space]] [[!redirects T3 spaces]] [[!redirects regular Hausdorff space]] [[!redirects regular Hausdorff spaces]] [[!redirects regular Hausdorff topological space]] [[!redirects regular Hausdorff topological spaces]] [[!redirects regular topological space]] [[!redirects regular topological spaces]] [[!redirects regular topology]] [[!redirects regular topologies]] [[!redirects R2 topology]] [[!redirects R2 topologies]] [[!redirects T3 topology]] [[!redirects T3 topologies]] [[!redirects T3 axiom]] [[!redirects regular locale]] [[!redirects regular locales]] [[!redirects semiregular space]] [[!redirects semiregular spaces]] \end{document}